Suppose (e1,e2,...,en) is an orthonormal basis of the inner product space V and v1,v2,...,vn are vectors of V such that ||ej−vj||<1/√n. Prove that (v1,v2,...,vn) is a basis of V.
"\\text{Note: It is enough to show that \\((v_1 \\ldots, v_n)\\) are linearly independent.}\\\\\n\\text{Suppose \\(v_i\\) are linearly dependent then there are scalars \\((\\lambda_1 ,\\ldots ,\\lambda_n)\\) whic are not all zero such that } \\\\\n\\sum_{i=1}^{n} \\lambda_i v_i = 0 \\\\\n\\text{Then }\\\\\n 0 = \\sum_{i=1}^{n} \\lambda_i v_i = \\sum_{i=1}^{n} \\lambda_i (v_i - e_i) + \\sum_{i=1}^{n} \\lambda_i e_i \\\\\n\\implies \\| \\sum_{i=1}^{n} \\lambda_i (v_i - e_i ) \\|= \\| \\sum_{i=1}^{n} \\lambda_i e_i \\| \\\\\n\\text{However, } \\\\\n\\|\\sum_{i=1}^{n} \\lambda_i e_i\\| =\\|\\sum_{i=1}^{n} \\lambda_i( v_i-e_i) \\| \\le \\sum_{i=1}^{n} |\\lambda_i| \\|v_i - e_i\\| \\\\\n\\qquad\\qquad\\quad\\quad < \\frac{1}{\\sqrt{n}} \\sum_{i=1}^{n} |\\lambda_i| \\le \\left(\\sum_{i=1}^{n} |\\lambda_i|^2 \\right)^{\\frac{1}{2}} \\,\\,\\,\\,\\text{(Cauchy-Schwarz)} \\\\\n\n\\implies \\|\\sum_{i=1}^{n} \\lambda_i e_i\\| \\le \\left(\\sum_{i=1}^{n} |\\lambda_i|^2 \\right)^{\\frac{1}{2}} \\,\\,\\,\\, (1)\\\\\n\\text{Since \\(e_i\\) are orthonormal we have }\\\\\n\\|\\sum_{i=1}^{n} \\lambda_i e_i\\|^2 = \\sum_{i=1}^{n} |\\lambda_i|^2 \\\\\n\\text{So we have: }\\\\\n\\|\\sum_{i=1}^{n} \\lambda_i e_i\\| = \\left(\\sum_{i=1}^{n} |\\lambda_i|^2 \\right)^{\\frac{1}{2}}\\\\\n\\text{which is a contradiction to what we have above} \\\\\\text{ (i.e inequality (1)) hence showing that \\((v_1, \\ldots,v_n)\\) are linearly indepemdent and we have our result.}"
Comments
Leave a comment