Question1
Given matrix A = 2 2 1
1 3 1
1 2 2
1.1 find the eigenvalues of A
1.2. Determine an eigenvector for the eigenvalue = 5
"A=\\begin{bmatrix}\n 2 & 2&1 \\\\\n 1 & 3&1\\\\\n1&2&2\n\\end{bmatrix}"
1.1. "\\det (A-\\lambda I)=\\begin{vmatrix}\n 2-\\lambda & 2&1 \\\\\n 1 & 3-\\lambda &1\\\\ 1&2&2-\\lambda \n\\end{vmatrix}=-\\lambda^3+7\\lambda^2-11\\lambda+5=-(\\lambda-5)(\\lambda-1)^2=0"
Eigenvalues: "\\lambda _1=5" and "\\lambda_2=1"
1.2.
"\\lambda_1=5" ": \\ \\ (A-5I)\\mathbf{x}= \\begin{bmatrix}\n -3 & 2&1 \\\\\n 1 & -2&1\\\\\n1&2&-3\n\\end{bmatrix}\n\\begin{bmatrix}\n x\\\\y\\\\z\n\\end{bmatrix}=\\begin{bmatrix}\n 0\\\\0\\\\0\n\\end{bmatrix}" gives the eigenvector "\\mathbf{x}_1=\\begin{bmatrix}1\\\\1\\\\1\\end{bmatrix}" .
Answer: 1.1. "\\lambda_1=5" and "\\lambda_2=1" ; 1.2. "\\mathbf{x}_1=\\begin{bmatrix}1\\\\1\\\\1\\end{bmatrix}"
Comments
Leave a comment