4x^2+3y^2+z^2-8xy-6yz+4zx
Solution.
Write the given form as "4x^2-4xy+2xz-4xy+3y^2-3yz+2zx-3yz+z^2"
The corresponding matrix is "A=\\begin{pmatrix}\n 4 & -4&2 \\\\\n -4 & 3&-3\\\\\n2&-3&1\n\\end{pmatrix}"
We write "A=IAI"
We apply elementary operations on A and we apply the same row operations on the prefactor (R) and column operations on the post factor (C).
"\\begin{pmatrix}\n 4 & -4&2 \\\\\n -4 & 3&-3\\\\\n2&-3&1\n\\end{pmatrix}=\\begin{pmatrix}\n 1 & 0&0 \\\\\n 0&1&1\\\\\n0&0&1\n\\end{pmatrix}A\\begin{pmatrix}\n 1 & 0&0 \\\\\n 0&1&1\\\\\n0&0&1\n\\end{pmatrix}"
Applying "R_2+R_1, 2R_3-R_1, 2R_2-R_3,R_1-2R_3,R_1+R_2,R_1\/2,\nR_2\/\\sqrt{2}, R_3\/\\sqrt{2},R_2\\leftrightarrow R_3"
and "C_2+C_1, 2C_3-C_1, 2C_2-C_3, C_1-2C_3, C_1+C_2,C_1\/2,\nC_2\/\\sqrt2,C_3\/\\sqrt2,C_2\\leftrightarrow C_3"
we get
"\\begin{pmatrix}\n 1 & 0&1 \\\\\n 0 & -1&0\\\\\n0&0&-1\n\\end{pmatrix}=\\begin{pmatrix}\n 3& 1&-3 \\\\\n -1\/\\sqrt{2}&0&2\/\\sqrt2\\\\\n3\/\\sqrt2&2\/\\sqrt2&-2\/\\sqrt2\n\\end{pmatrix}A\\begin{pmatrix}\n 3& -1\/\\sqrt2&3\/\\sqrt2 \\\\\n 1&0&2\/\\sqrt2\\\\\n-3&2\/\\sqrt2&-2\/\\sqrt2\n\\end{pmatrix}"
We have "D=P^TAP," where "D=\\begin{pmatrix}\n 1 & 0&1 \\\\\n 0 & -1&0\\\\\n0&0&-1\n\\end{pmatrix}."
"P=\\begin{pmatrix}\n 3& -1\/\\sqrt2&3\/\\sqrt2 \\\\\n 1&0&2\/\\sqrt2\\\\\n-3&2\/\\sqrt2&-2\/\\sqrt2\n\\end{pmatrix}."
The linear transformation is X=PY, or
"\\begin{pmatrix}\n x \\\\\n y\\\\z\n\\end{pmatrix}=\\begin{pmatrix}\n 3& -1\/\\sqrt2&3\/\\sqrt2 \\\\\n 1&0&2\/\\sqrt2\\\\\n-3&2\/\\sqrt2&-2\/\\sqrt2\n\\end{pmatrix}\\begin{pmatrix}\n y_1\\\\\n y_2\\\\y_3\n\\end{pmatrix}"
From here
The canonical form is reduced to "X^TAX=Y^TDY" .
We will have
"\\begin{pmatrix}\n y_1&y_2&y_3 \\\\\n\\end{pmatrix}\\begin{pmatrix}\n 1 & 0&1 \\\\\n 0 & -1&0\\\\\n0&0&-1\n\\end{pmatrix}\\begin{pmatrix}\n y_1 \\\\\n y_2\\\\y_3\n\\end{pmatrix}=y_1^2-y_2^2-y_3^2."
Answer. The given quadratic form is reduced to normal form "y_1^2-y_2^2-y_3^2."
Comments
Leave a comment