Select 3 different digits from these numbers (987621). Use only these numbers as coefficient and create a matrix of 5x5 (with all coefficient non zero) that has rank 3. Also, explain why the rank is equal to 3.
Let the "5\\times 5" matrix made from the digits "1,2,6."
Let "\\mathbf{A}=\\left(\\begin{array}{lllll}\n1 & 1 & 1 & 1 & 1 \\\\\n1 & 2 & 2 & 2 & 2 \\\\\n2 & 2 & 2 & 2 & 2 \\\\\n1 & 1 & 6 & 6 & 6 \\\\\n6 & 6 & 6 & 6 & 6\n\\end{array}\\right)"
To calculate matrix rank transform matrix to ụpper triangular form, using elementary row operations.
"\\mathrm{R}_{2}-1 \\mathrm{R}_{1} \\rightarrow \\mathrm{R}_{2} (multiply \\ 1 \\ row \\ by \\ 1 \\ and \\ subtract \\ it \\ from \\ 2 \\ row) ;\\\\ \\mathrm{R}_{3}-2 \\mathrm{R}_{1} \\rightarrow \\mathrm{R}_{3} (multiply \\ 1 \\ row \\ by \\ 2 \\ and \\ subtract \\ it \\ from \\ 3 \\ row);\\\\ \\mathrm{R}_{4}-1 \\mathrm{R}_{1} \\rightarrow \\mathrm{R}_{4} (multiply \\ 1 \\ row \\ by \\ 1 \\ and \\ subtract \\ it \\ from \\ 4 \\ row ) ;\\\\ \\mathrm{R}_{5}-6 \\mathrm{R}_{1} \\rightarrow \\mathrm{R}_{5} (multiply \\ 1 \\ row \\ by \\ 6 \\ and \\ subtract \\ it \\ from \\ 5 \\ row )"
"\\left(\\begin{array}{lllll}\n1 & 1 & 1 & 1 & 1 \\\\\n0 & 1 & 1 & 1 & 1 \\\\\n0 & 0 & 0 & 0 & 0 \\\\\n0 & 0 & 5 & 5 & 5 \\\\\n0 & 0 & 0 & 0 & 0\n\\end{array}\\right)\\\\\n \n \\mathrm{R}_{3} \\leftrightarrow \\ \\mathrm{R}_{4} (interchange \\ the \\ 3 \\ and \\ 4 \\ rows)\\\\\n \n\\left(\\begin{array}{lllll}\n1 & 1 & 1 & 1 & 1 \\\\\n0 & 1 & 1 & 1 & 1 \\\\\n0 & 0 & 5 & 5 & 5 \\\\\n0 & 0 & 0 & 0 & 0 \\\\\n0 & 0 & 0 & 0 & 0\n\\end{array}\\right)\\\\"
"\\begin{aligned}\n&\\mathrm{R}_{3} \/ 5 \\rightarrow \\mathrm{R}_{3} \\text { (divide the } 3 \\text { row by } 5 \\text { ) } \\\\\n&\\left(\\begin{array}{lllll}\n1 & 1 & 1 & 1 & 1 \\\\\n0 & 1 & 1 & 1 & 1 \\\\\n0 & 0 & 1 & 1 & 1 \\\\\n0 & 0 & 0 & 0 & 0 \\\\\n0 & 0 & 0 & 0 & 0\n\\end{array}\\right)\n\\end{aligned}"
Answer. Since there is 3 non-zero rows, then "\\operatorname{Rank}(\\mathbf{A})=3 ."
Comments
Leave a comment