In R
4
let L
1
be the subspace spaned by the vectors a=(1;2;5;1), b=(4;3;3;0), c=(7;4;1;−1), and let L
2
be the subspace spaned by the vectors d=(1;1;1;1), f=(−1;0;3;−1) and g=(5;2;−1;−3). Find the dimension of L
1
∩L
2
.
"dim (L_1\\cap L_2)=dimL_1+dimL_2-dim(L_1\\cup L_2)." We can see that "dimL_1=2" , because the rank of the matrix composed of the coordinates of the vectors "a,b,c" equals to 2:
"rank \\begin{pmatrix} 1 & 2 &5& 1\\\\\n 4 & 3 &3&0\\\\\n 7& 4& 1& -1\\\\ \\end{pmatrix}=" "rank \\begin{pmatrix}\n 1 & 2 &5& 1\\\\\n 0 & -5 &-17&-4\\\\\n 0& -10& -34& -8 \n\\end{pmatrix}=" "rank \\begin{pmatrix}\n 1 & 2 &5& 1\\\\\n 0 & -5 &-17&-4\n\\end{pmatrix}=2" .
We can see that "dimL_2=3" , because
"rank \\begin{pmatrix}\n 1 & 1 &1& 1\\\\\n -1 & 0 &3&-1\\\\\n 5& 2& -1& -3 \n\\end{pmatrix}=" "rank \\begin{pmatrix}\n 1 & 1 &1& 1\\\\\n 0 & 1 &4&0\\\\\n 0& -3& -6& -8 \n\\end{pmatrix}=" "rank \\begin{pmatrix}\n 1 & 1 &1& 1\\\\\n 0 & 1 &4&0\\\\\n 0& 0& 6& -8 \n\\end{pmatrix}=3"
If we want find the "dim(L_1\\cup L_2)" , we can find the rank of a matrix composed of vectors "a,b,c,d,f,g" :
"rank \\begin{pmatrix}\n 1 & 2 &5& 1\\\\\n 4 & 3 &3&0\\\\\n 7& 4& 1& -1\\\\ 1 & 1 &1& 1\\\\\n -1 & 0 &3&-1\\\\\n 5& 2& -1& -3 \n\\end{pmatrix}=" "rank \\begin{pmatrix}\n 1 & 2 &5& 1\\\\\n 0 & -5 &-17&-4\\\\\n 0& -10& -34& -8 \\\\ 0 & -1 &-4& 0\\\\\n 0 &2 &8&0\\\\\n 0& -8& -26& -8 \n\\end{pmatrix}=" "rank \\begin{pmatrix}\n 1 & 2 &5& 1\\\\ 0 & -1 &-4& 0\\\\\n 0 & -5 &-17&-4\\\\\n 0& -8& -26& -8 \n\\end{pmatrix}=" "rank \\begin{pmatrix}\n 1 & 2 &5& 1\\\\ 0 & -1 &-4& 0\\\\\n 0 & 5 &17&4\\\\\n 0& 4& 13& 4 \n\\end{pmatrix}=" "rank \\begin{pmatrix}\n 1 & 2 &5& 1\\\\ 0 & -1 &-4& 0\\\\\n 0 & 0 &-3&4\n\\end{pmatrix}=3"
So "dim(L_1\\cup L_2)=3". It follows that "dim (L_1\\cap L_2)=2+3-3=2" .
Comments
Leave a comment