If ab=0, either a=0 or b=0
-Products of two non-zero numbers is always non-zero
But products of two non-zero matrices can be zero matrix
Using K given above
K="\\begin{bmatrix}\n 1&-1&;&1&-1 \n \n\\end{bmatrix}"
That is K"\\begin{pmatrix}\n 1 & -1 \\\\\n 1 & -1\n\\end{pmatrix}"
K2=(K)(K)
="\\begin{pmatrix}\n 1 & -1 \\\\\n 1& -1\n\\end{pmatrix}" "\\begin{pmatrix}\n 1 & -1\\\\\n 1 & -1\n\\end{pmatrix}"
"\\begin{pmatrix}\n 1\u00d71+-1\u00d71 & 1\u00d7-1+-1\u00d7-1\\\\\n 1\u00d71+-1\u00d71 & 1\u00d7-1+-1\u00d7-1\n\\end{pmatrix}"
="\\begin{pmatrix}\n 0 & 0\\\\\n 0& 0\n\\end{pmatrix}"
=0 (Null matrix)
Comments
Leave a comment