consider the vector space of R3
2.1. Show that <x, y>=x1y1+2x2y2+x3y3, x="\\begin{bmatrix}\n x1 \\\\\n x2 \\\\\nx3\n\\end{bmatrix}" ,y="\\begin{bmatrix}\n y1 \\\\\n y2 \\\\\n y3\n\\end{bmatrix}""\\in" R3
2.2. Are the vectors "\\begin{bmatrix}\n 1 \\\\\n 1 \\\\\n 1\n\\end{bmatrix}", "\\begin{bmatrix}\n 1 \\\\\n 1 \\\\\n - 1\n\\end{bmatrix}", "\\begin{bmatrix}\n 1 \\\\\n -1 \\\\\n -1\n\\end{bmatrix}" Linearly independent?
2.3. Apply the Grem-Schmidt process to the following subset of R3 "\\begin{bmatrix}\n 1 \\\\\n 1 \\\\\n 1\n\\end{bmatrix}", "\\begin{bmatrix}\n 1 \\\\\n 1 \\\\\n - 1\n\\end{bmatrix}", "\\begin{bmatrix}\n 1 \\\\\n -1 \\\\\n -1\n\\end{bmatrix}" to find an orthogonal basis with the inner product defined in 2.1. for the span of this subset
2.
"\\begin{vmatrix}\n 1 & 1& 1\\\\\n 1 & 1&-1\\\\\n1&-1&-1\n\\end{vmatrix}=-2-2=-4"
Since determinant is not equal zero, the vectors are linearly independent.
3.
orthogonal basis:
"v_1=u_1=(1,1,1)"
"v_2=u_2-\\frac{\\langle u_1,u_2\\rangle}{|u_1|^2}u_1=(1,1,-1)-\\frac{2}{3}(1,1,1)=(1\/3,1\/3,-5\/3)"
"v_3=u_3-\\frac{\\langle u_1,u_3\\rangle}{|u_1|^2}u_1-\\frac{\\langle u_3,v_2\\rangle}{|v_2|^2}v_2=(1,-1,-1)+\\frac{2}{3}(1,1,1)-\\frac{4}{9}(1\/3,1\/3,-5\/3)="
"=(5\/3,-1\/3,11\/27)"
1.
Let "(e_1,e_2,e_3)" be a basis.
Then:
"x=x_1e_1+x_2e_2+x_3e_3"
"y=y_1e_1+y_2e_2+y_3e_3"
"\\langle x,y \\rangle =\\sum_i\\sum_j x_iy_i\\langle e_i,e_j\\rangle"
if "\\langle e_1,e_1\\rangle=1,\\langle e_1,e_2\\rangle=\\langle e_1,e_3\\rangle=\\langle e_2,e_3\\rangle=0,\\langle e_2,e_2\\rangle=2,\\langle e_3,e_3\\rangle=1"
then "\\langle x,y \\rangle=" x1y1+2x2y2+x3y3
Comments
Leave a comment