If "A" is an "n \u00d7 n" matrix, then the sum of the "n" eigenvalues of "A" is the trace of "A" and the product of the "n" eigenvalues is the determinant of "A."
"A-\\lambda I=\\begin{pmatrix}\n 2-\\lambda & 1 & 0 \\\\\n 0 & 2-\\lambda & 0\\\\\n 2 &3 & 1-\\lambda\n\\end{pmatrix}"
"\\det (A-\\lambda I)=\\begin{vmatrix}\n 2-\\lambda & 1 & 0 \\\\\n 0 & 2-\\lambda & 0\\\\\n 2 &3 & 1-\\lambda\n\\end{vmatrix}"
"=(2-\\lambda)\\begin{vmatrix}\n 2-\\lambda & 0 \\\\\n 3 & 1-\\lambda\n\\end{vmatrix}-1\\begin{vmatrix}\n 0 & 0 \\\\\n 2 & 1-\\lambda\n\\end{vmatrix}+0\\begin{vmatrix}\n 0 & 2-\\lambda \\\\\n 2 & 3\n\\end{vmatrix}"
"=(2-\\lambda)(2-\\lambda)(1-\\lambda)"
Characteristic equation
"(2-\\lambda)(2-\\lambda)(1-\\lambda)=0"
"\\lambda_1=1, \\lambda_2=2, \\lambda_3=2"
These are the eigenvalues.
Hence
=> matrix "A" consistent.
Comments
Leave a comment