1. Use Gaussian elimination to solve the system of linear equations
300x1 112x2 109x3 = 521
252x1 156x2 330x3 =738
108x1 -123x2 121x3 =106
2. Solve the following system linear equations by Gauss Jordan Method
x +y +z = 5
2x +3y +5z = 8
4x + 5z = 2
1.
"\\begin{pmatrix}\n 300 & 112&109&|&521 \\\\\n 252 & 156&330&|&738 \\\\\n108 & -123&121&|&106 \\\\\n\\end{pmatrix}"
divide the 1 row by 300:
"\\begin{pmatrix}\n 1 & 28\/75&109\/300&|&521\/300 \\\\\n 252 & 156&330&|&738 \\\\\n108 & -123&121&|&106 \\\\\n\\end{pmatrix}"
multiply 1 row by 252 and subtract it from 2 row; multiply 1 row by 108 and subtract it from 3 row:
"\\begin{pmatrix}\n 1 & 28\/75&109\/300&|&521\/300 \\\\\n 0 & 61.92&238.44&|&300.36 \\\\\n0 & -163.32&81.76&|&-81.56 \\\\\n\\end{pmatrix}"
divide the 2 row by 61.92:
"\\begin{pmatrix}\n 1 & 28\/75&109\/300&|&521\/300 \\\\\n 0 & 1&1987\/516&|&2503\/516 \\\\\n0 & -163.32&81.76&|&-81.56 \\\\\n\\end{pmatrix}"
multiply 2 row by 28/75 and subtract it from 1 row; (multiply 2 row by 163.32 and add it to 3 row:
"\\begin{pmatrix}\n 1 & 0&-1663\/1548&|&-115\/1548 \\\\\n 0 & 1&1987\/516&|&2503\/516 \\\\\n0 &0&122235\/172&|&122235\/172 \\\\\n\\end{pmatrix}"
divide the 3 row by 122235/172:
"\\begin{pmatrix}\n 1 & 0&-1663\/1548&|&-115\/1548 \\\\\n 0 & 1&1987\/516&|&2503\/516 \\\\\n0 &0&1&|&1 \\\\\n\\end{pmatrix}"
(multiply 3 row by 1663/1548 and add it to 1 row; multiply 3 row by 1987/516 and subtract it from 2 row:
"\\begin{pmatrix}\n 1 & 0&0&|&1 \\\\\n 0 & 1&0&|&1 \\\\\n0 &0&1&|&1 \\\\\n\\end{pmatrix}"
"x_1=x_2=x_3=1"
2.
"\\begin{pmatrix}\n 1 & 1&1&|&5 \\\\\n 2 & 3&5&|&8 \\\\\n4 & 0&5&|&2 \\\\\n\\end{pmatrix}"
multiply 1 row by 2 and subtract it from 2 row; multiply 1 row by 4 and subtract it from 3 row:
"\\begin{pmatrix}\n 1 & 1&1&|&5 \\\\\n 0 & 1&3&|&-2 \\\\\n0 & -4&1&|&-18 \\\\\n\\end{pmatrix}"
multiply 2 row by 1 and subtract it from 1 row; multiply 2 row by 4 and add it to 3 row:
"\\begin{pmatrix}\n 1 & 0&-2&|&7 \\\\\n 0 & 1&3&|&-2 \\\\\n0 & 0&13&|&-26 \\\\\n\\end{pmatrix}"
divide the 3 row by 13:
"\\begin{pmatrix}\n 1 & 0&-2&|&7 \\\\\n 0 & 1&3&|&-2 \\\\\n0 & 0&1&|&-2 \\\\\n\\end{pmatrix}"
multiply 3 row by 2 and add it to 1 row; multiply 3 row by 3 and subtract it from 2 row:
"\\begin{pmatrix}\n 1 & 0&0&|&3 \\\\\n 0 & 1&0&|&4 \\\\\n0 & 0&1&|&-2 \\\\\n\\end{pmatrix}"
"x=3,y=4,z=-2"
Comments
Leave a comment