Let.
1 0 0
0 3 6
0 -1 -2
Verify that C 2 = C holds. Find the eigenvalues and eigenvectors of C.
"C^2=\\begin{pmatrix}\n 1 & 0&0 \\\\\n 0 & 3&6\\\\\n0&-1&-2\n\\end{pmatrix}\\begin{pmatrix}\n 1 & 0&0 \\\\\n 0 & 3&6\\\\\n0&-1&-2\n\\end{pmatrix}=\\begin{pmatrix}\n 1 & 0&0 \\\\\n 0 & 10&22\\\\\n0&-2&-2\n\\end{pmatrix}"
"\\begin{vmatrix}\n 1-\\lambda & 0&0 \\\\\n 0&3- \\lambda& 6\\\\\n0&-1&-2-\\lambda\n\\end{vmatrix}=0"
"(1-\\lambda)((3-\\lambda)(-2-\\lambda)+6)=0"
"\\lambda_1=1"
"\\lambda^2-\\lambda=0"
"\\lambda_2=0,\\lambda_3=1"
for "\\lambda=1" :
"2y+6z=0"
"-y-3z=0"
"y=-3z"
"u_1=\\begin{pmatrix}\n 1 \\\\\n -1\\\\\n3\n\\end{pmatrix},u_2=\\begin{pmatrix}\n 1 \\\\\n 1\\\\\n-3\n\\end{pmatrix}"
for "\\lambda=0" :
"x=0"
"3y+6z=0"
"-y-2z=0"
"y=-2z"
"u_3=\\begin{pmatrix}\n 0 \\\\\n -1\\\\\n2\n\\end{pmatrix}"
Comments
Leave a comment