13. Suppose T, S : R^2"\\to" R^2 are linear defined by T(u, v) =(3u + v, u + 2v) and S(x, y) =(2x - y, x + y). Also the matrices of T and S with respect to the standard bases of R^2 and R^2 are given as
M(T) ="\\begin{bmatrix}\n 3 & 1 \\\\\n 1 & 2\n\\end{bmatrix}" and M(S) ="\\begin{bmatrix}\n 2 & -1 \\\\\n 1 & 1\n\\end{bmatrix}"Then M(TS) =
(i)"\\begin{bmatrix}\n 1 & 0 \\\\\n 0 & 1\n\\end{bmatrix}"
(ii)"\\begin{bmatrix}\n 3 & 1 \\\\\n 1 & 5\n\\end{bmatrix}"
(iii)"\\begin{bmatrix}\n 3 & 1 \\\\\n 4 & 1\n\\end{bmatrix}"
(iv) None
14. Suppose T : R^2"\\to" R^2 is linear defined by T(x, y) = (y, x). Then the eigenvalues of T is...
(i) 1 and - 1
(ii) 0 and 2
(iii) Does not exist
(iv) None
13)
"M(TS)=\\begin{bmatrix}\n 3 & 1 \\\\\n 1 & 2\n\\end{bmatrix}\\begin{bmatrix}\n 2 & -1\\\\\n 1 & 1\n\\end{bmatrix}=\\begin{bmatrix}\n 7 & -2 \\\\\n 4 & 1\n\\end{bmatrix}"
Correct option: None
14)
"T(x,y)=(y,x)"
"\\implies\\>T(x,y)=\\lambda(x,y)"
"\\therefore\\>\\lambda(x,y)=(y,x)"
"\\lambda\\>x=y........(i)"
"\\lambda\\>y=x........(ii)"
Substituting "(ii)" in "(i)"
"\\lambda(\\lambda\\>y)=y"
"\\lambda^2=1"
"\\lambda=^+_-1"
"\\therefore\\lambda=1\\>or\\>-1"
Comments
Leave a comment