"A=\\begin{bmatrix}\n 1 & 3 & 5 \\\\\n 4 & 7 & 2 \\\\\n9 & 6 & 8\n\\end{bmatrix}"
"\\begin{bmatrix}\n 1 & 3 & 5 & & 1 & 0 & 0 \\\\\n 4 & 7 & 2 & & 0 & 1 & 0 \\\\\n 9 & 6 & 8 & & 0 & 0 & 1 \n\\end{bmatrix}" "R_2=R_2-4R_1"
"\\begin{bmatrix}\n 1 & 3 & 5 & & 1 & 0 & 0 \\\\\n 0 & -5 & -18 & & -4 & 1 & 0 \\\\\n 9 & 6 & 8 & & 0 & 0 & 1 \n\\end{bmatrix}" "R_3=R_3-9R_1"
"\\begin{bmatrix}\n 1 & 3 & 5 & & 1 & 0 & 0 \\\\\n 0 & -5 & -18 & & -4 & 1 & 0 \\\\\n 0 & -21 & -37 & & -9 & 0 & 1 \n\\end{bmatrix}" "R_2=-R_2\/5"
"\\begin{bmatrix}\n 1 & 3 & 5 & & 1 & 0 & 0 \\\\\n 0 & 1 & 18\/5 & & 4\/5 & -1\/5 & 0 \\\\\n 0 & -21 & -37 & & -9 & 0 & 1 \n\\end{bmatrix}" "R_1=R_1-3R_2"
"\\begin{bmatrix}\n 1 & 0 & -29\/5 & & -7\/5 & 3\/5 & 0 \\\\\n 0 & 1 & 18\/5 & & 4\/5 & -1\/5 & 0 \\\\\n 0 & -21 & -37 & & -9 & 0 & 1 \n\\end{bmatrix}" "R_3=R_3+21R_2"
"\\begin{bmatrix}\n 1 & 0 & -29\/5 & & -7\/5 & 3\/5 & 0 \\\\\n 0 & 1 & 18\/5 & & 4\/5 & -1\/5 & 0 \\\\\n 0 & 0 & 193\/5 & & 39\/5 & -21\/5 & 1 \n\\end{bmatrix}" "R_3=5R_3\/193"
"\\begin{bmatrix}\n 1 & 0 & -29\/5 & & -7\/5 & 3\/5 & 0 \\\\\n 0 & 1 & 18\/5 & & 4\/5 & -1\/5 & 0 \\\\\n 0 & 0 & 1 & & 39\/193 & -21\/193 & 5\/193 \n\\end{bmatrix}" "R_1=R_1+29R_3\/5"
"\\begin{bmatrix}\n 1 & 0 & 0 & & -44\/193 & -6\/193 & 29\/193 \\\\\n 0 & 1 & 18\/5 & & 4\/5 & -1\/5 & 0 \\\\\n 0 & 0 & 1 & & 39\/193 & -21\/193 & 5\/193 \n\\end{bmatrix}" "R_2=R_2-18R_3\/5"
"\\begin{bmatrix}\n 1 & 0 & 0 & & -44\/193 & -6\/193 & 29\/193 \\\\\n 0 & 1 & 0 & & 14\/193 & 37\/193 & -18\/193 \\\\\n 0 & 0 & 1 & & 39\/193 & -21\/193 & 5\/193 \n\\end{bmatrix}"We are done. On the left is the identity matrix. On the right is the inverse matrix.
"A^{-1}=\\begin{bmatrix}\n -44\/193 & -6\/193 & 29\/193 \\\\\n 14\/193 & 37\/193 & -18\/193 \\\\\n39\/193 & -21\/193 & 5\/193\n\\end{bmatrix}"
Comments
Leave a comment