Find the product of eigen value of matrix
From the property of eigenvalues, the product of eigenvalues of a matrix equals the determinant of the matrix.
Now, the given matrix is;
"\\displaystyle\nP=\\begin{bmatrix}\n 2 & 0&1 \\\\\n 4 & -3&3\\\\\n 0&2&-1\n\\end{bmatrix}", and "\\displaystyle\n|P|=\\begin{vmatrix}\n 2 & 0 & 1 \\\\\n 4 & -3 & 3\\\\\n 0 & 2 & -1\n\\end{vmatrix}=2\\begin{vmatrix}\n -3 & 3 \\\\\n 2 & -1\n\\end{vmatrix}+1\\begin{vmatrix}\n 4 & -3 \\\\\n 0 & 2\n\\end{vmatrix}=2(3-6)+1(8-0)\\\\\\quad\\ \\ =2(-3)+1(8)=-6+8=2"
Thus, the product of the eigenvalues of "\\displaystyle\nP=\\begin{bmatrix}\n 2 & 0&1 \\\\\n 4 & -3&3\\\\\n 0&2&-1\n\\end{bmatrix}"is "2."
Comments
Leave a comment