Answer to Question #297501 in Linear Algebra for Hossain

Question #297501

(a) Suppose that a matrix in echelon form has more rows than columns. Show that that the matrix must have at least one zero row.

Hints: To get intuition, try this out with a 3 × 2 matrix first. Can there be more pivots than

columns? Consider the row with the last pivot. What must the next row look like?


(b) Suppose that a matrix in echelon form has more columns than rows. Show that there

must be at least one column which does not contain a pivot.

Hints: To get intuition, try this out with a 2×3 matrix first. Can there be more pivots than rows?


0
Expert's answer

Answer in progress...

Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!

Leave a comment

LATEST TUTORIALS
New on Blog
APPROVED BY CLIENTS