Augmented matrix
"\\begin{bmatrix}\n 1 & -1 & 2 & -1 & & -1 \\\\\n 2 & 1 & -2 & -2 & & -2\\\\\n -1 & 2 & -4 & 1 & & 1 \\\\\n 3 & 0 & 0 & -3 & & -3 \\\\\n\\end{bmatrix}" "R_2=R_2-2R_1"
"\\begin{bmatrix}\n 1 & -1 & 2 & -1 & & -1 \\\\\n 0 & 3 & -6 & 0 & & 0\\\\\n -1 & 2 & -4 & 1 & & 1 \\\\\n 3 & 0 & 0 & -3 & & -3 \\\\\n\\end{bmatrix}" "R_3=R_3+R_1"
"\\begin{bmatrix}\n 1 & -1 & 2 & -1 & & -1 \\\\\n 0 & 3 & -6 & 0 & & 0\\\\\n 0 & 1 & -2 & 0 & & 0 \\\\\n 3 & 0 & 0 & -3 & & -3 \\\\\n\\end{bmatrix}" "R_4=R_4-3R_1"
"\\begin{bmatrix}\n 1 & -1 & 2 & -1 & & -1 \\\\\n 0 & 3 & -6 & 0 & & 0\\\\\n 0 & 1 & -2 & 0 & & 0 \\\\\n 0 & 3 & -6 & 0 & & 0 \\\\\n\\end{bmatrix}" "R_2=R_2\/3"
"\\begin{bmatrix}\n 1 & -1 & 2 & -1 & & -1 \\\\\n 0 & 1 & -2 & 0 & & 0\\\\\n 0 & 1 & -2 & 0 & & 0 \\\\\n 0 & 3 & -6 & 0 & & 0 \\\\\n\\end{bmatrix}" "R_1=R_1+R_2"
"\\begin{bmatrix}\n 1 &0 & 0 & -1 & & -1 \\\\\n 0 & 1 & -2 & 0 & & 0\\\\\n 0 & 1 & -2 & 0 & & 0 \\\\\n 0 & 3 & -6 & 0 & & 0 \\\\\n\\end{bmatrix}" "R_3=R_3-R_2"
"\\begin{bmatrix}\n 1 &0 & 0 & -1 & & -1 \\\\\n 0 & 1 & -2 & 0 & & 0\\\\\n 0 & 0 & 0 & 0 & & 0 \\\\\n 0 & 3 & -6 & 0 & & 0 \\\\\n\\end{bmatrix}" "R_4=R_4-3R_2"
"\\begin{bmatrix}\n 1 &0 & 0 & -1 & & -1 \\\\\n 0 & 1 & -2 & 0 & & 0\\\\\n 0 & 0 & 0 & 0 & & 0 \\\\\n 0 & 0 &0 & 0 & & 0 \\\\\n\\end{bmatrix}" If "w=t, t\\in \\R, z=s, s\\in \\R," then "x=-1+t, y=2s, z=s, w=t, t,s\\in \\R."
The linear system has infinitely many solutions
"(-1+t, 2s, s, t), \\ t,s\\in \\R"
Comments
Leave a comment