Balance the given chemical equation using linear equations (gussis Jordan elimination method).
Na₂CO3 + C + N₂ ---> NaCN + CO
Let's write the equation in the form
a Na2CO3 + b C + c N2 ---> d NaCN + e CO
where a, b, c, d, and e are unknown numbers.
Equate the left and right sides of the equation:
2 a = d for Na
a + b = d + e for C
3 a = e for O
2 c = d for N
or in matrix form
Then using Gauss-Jordan method
"\\begin{bmatrix}\n 2 & 0 & 0 & -1 & 0 \\\\\n 1 & 1 & 0 & -1 & -1 \\\\\n 3 & 0 & 0 & 0 & -1 \\\\\n 0 & 0 & 2 & -1 & 0\n\\end{bmatrix} \\rarr\n\\begin{bmatrix}\n 1 & 0 & 0 & -1\/2 & 0 \\\\\n 1 & 1 & 0 & -1 & -1 \\\\\n 3 & 0 & 0 & 0 & -1 \\\\\n 0 & 0 & 2 & -1 & 0\n\\end{bmatrix} \\rarr\n\\begin{bmatrix}\n 1 & 0 & 0 & -1\/2 & 0 \\\\\n 0 & 1 & 0 & -1\/2 & -1 \\\\\n 0 & 0 & 0 & 3\/2 & -1 \\\\\n 0 & 0 & 2 & -1 & 0\n\\end{bmatrix} \\rarr"
"\\begin{bmatrix}\n 1 & 0 & 0 & -1\/2 & 0 \\\\\n 0 & 1 & 0 & -1\/2 & -1 \\\\\n 0 & 0 & 0 & 3\/2 & -1 \\\\\n 0 & 0 & 2 & -1 & 0\n\\end{bmatrix} \\rarr\n\\begin{bmatrix}\n 1 & 0 & 0 & -1\/2 & 0 \\\\\n 0 & 1 & 0 & -1\/2 & -1 \\\\\n 0 & 0 & 2 & -1 & 0 \\\\\n 0 & 0 & 0 & 3\/2 & -1\n\\end{bmatrix} \\rarr\n\\begin{bmatrix}\n 1 & 0 & 0 & -1\/2 & 0 \\\\\n 0 & 1 & 0 & -1\/2 & -1 \\\\\n 0 & 0 & 1 & -1\/2 & 0 \\\\\n 0 & 0 & 0 & 3\/2 & -1\n\\end{bmatrix} \\rarr"
"\\begin{bmatrix}\n 1 & 0 & 0 & -1\/2 & 0 \\\\\n 0 & 1 & 0 & -1\/2 & -1 \\\\\n 0 & 0 & 1 & -1\/2 & 0 \\\\\n 0 & 0 & 0 & 1 & -2\/3\n\\end{bmatrix} \\rarr\n\\begin{bmatrix}\n 1 & 0 & 0 & 0 & -1\/3 \\\\\n 0 & 1 & 0 & 0 & -4\/3 \\\\\n 0 & 0 & 1 & 0 & -1\/3 \\\\\n 0 & 0 & 0 & 1 & -2\/3\n\\end{bmatrix}"
Therefore if e = 3 then a = 1, b = 4, c =1, d = 2 and the equation is
Na2CO3 + 4C + N2 ---> 2NaCN + 3CO
Comments
Leave a comment