⟶ [ 1 ⟶ [ -1 ⟶ [ 5
u1 = -3 u2 = 9 u3 = -7
-2 ] -6 ] h ]
are linearly independent? (Show all working)
"\\vec{a}=(1,-1,5), \\vec{b}=(-3,9,-7), \\vec{c}=(-2,-6,h)\\\\\n\\lambda_1\\vec{a}+\\lambda_2\\vec{b}+\\lambda_3\\vec{c}=\\vec{0}\\\\\n\\lambda_1=\\lambda_2=\\lambda_3=0\\\\\n\\lambda_1(1,-1,5)+\\lambda_2(-3,9,-7)+\\lambda_3(-2,-6,h)=\\\\=(0,0,0)\\\\\n\\lambda_1-3\\lambda_2-2\\lambda_3=0\\\\\n-\\lambda_1+9\\lambda_2-6\\lambda_3=0\\\\\n5\\lambda_1-7\\lambda_2+h\\lambda_3=0\\\\\n\\Delta=\n\\begin{vmatrix}\n 1& -3&-2 \\\\\n -1 & 9&-6\\\\\n5&-7&h\n\\end{vmatrix}=9h+90-14+\\\\+90-3h-42=6h+124\\neq0\\\\\nh\\neq-\\frac{124}{6}\\\\\nh\\neq-\\frac{62}{3}\\\\"
If "h\\neq-\\frac{62}{3}, h\\in(-\\infty,-\\frac{62}{3})\\cup(-\\frac{62}{3},\\infty)" the vectors "\\vec{a},\\vec{b},\\vec{c}" are linearly independent.
Comments
Leave a comment