EXERCISE 2: Find the rank and the nullity of the linear transformation S: p_1→ℝ given by
S(p(x)) = ∫_0^1p(x)dx.
"p\\left( x \\right) =a_0+a_1x\\\\S\\left( p\\left( x \\right) \\right) =0\\Rightarrow \\int_0^1{p\\left( x \\right) dx}=0\\Rightarrow \\int_0^1{\\left( a_0+a_1x \\right) dx}=0\\Rightarrow \\\\\\Rightarrow a_0+\\frac{a_1}{2}=0\\Rightarrow p\\left( x \\right) =t\\left( 1-2x \\right) \\,\\,-\\,\\,one\\,\\,element\\\\Nullity: dim\\left( ker\\left( S \\right) \\right) =1\\\\rank\\left( S \\right) =dim\\left( P_1 \\right) -dim\\left( ker\\left( S \\right) \\right) =2-1=1"
Comments
Leave a comment