Let x, y and z be three vectors in a vector space V
a. Prove that the span{x,y, z} is a subspace of V.
"u,v\\in span\\left\\{ x,y,z \\right\\} ,a,b\\in K:\\\\u=\\alpha _1x+\\beta _1y+\\gamma _1z\\\\v=\\alpha _2x+\\beta _2y+\\gamma _2z\\\\au+bv=a\\left( \\alpha _1x+\\beta _1y+\\gamma _1z \\right) +b\\left( \\alpha _2x+\\beta _2y+\\gamma _2z \\right) =\\\\=\\left( a\\alpha _1+b\\alpha _2 \\right) x+\\left( a\\beta _1+b\\beta _2 \\right) y+\\left( a\\gamma _1+b\\gamma _2 \\right) z\\in span\\left\\{ x,y,z \\right\\}"
Comments
Leave a comment