QUESTION 3 Let A = [ 4 0 1 −2 1 0 −2 0 1 ](its 3by3 matrix).
3.1. Find the eigenvalues of A.
3.2. For each eigenvalue of A find the corresponding eigenvectors.
3.3. Is A diagonalizable? Explain. If it is diagonalizable, then find P such that 𝐷 = 𝑃 −1𝐴𝑃 is a diagonal matrix. Do not compute 𝑃 −1(show all step!) .
"A = \\begin{bmatrix} 4 & 0 & 1 \\\\ \u22122 & 1 & 0 \\\\ \u22122 & 0 & 1 \\end{bmatrix}"
3.1. The characteristic polynomial of this matrix is
"P_{A}(\\lambda)=\\det (A-\\lambda I) =\\begin{vmatrix} 4-\\lambda & 0 & 1 \\\\ \u22122 & 1-\\lambda & 0 \\\\ \u22122 & 0 & 1-\\lambda \\end{vmatrix}="
"(1-\\lambda)\\begin{vmatrix} 4-\\lambda & 1 \\\\\u22122 & 1-\\lambda \\end{vmatrix}=(1-\\lambda)(\\lambda^2-5\\lambda+6)="
"=(1-\\lambda)(\\lambda-2)(\\lambda-3)"
The eigenvalues of "A" are the roots of the polynomial "P_A(\\lambda)":
"\\lambda_1=1", "\\lambda_2=2", "\\lambda_3=3".
3.2. The eigenvector "X_1" corresponding to the eigenvalue "\\lambda_1=1" is the solution to the equation "(A-\\lambda_1I)X=0".
"\\begin{bmatrix} 3 & 0 & 1 \\\\ \u22122 & 0 & 0 \\\\ \u22122 & 0 & 0 \\end{bmatrix}\\begin{bmatrix} x_1 \\\\ x_2 \\\\ x_3 \\end{bmatrix}=\\begin{bmatrix} 3x_1+x_3 \\\\-2 x_1 \\\\ -2 x_1 \\end{bmatrix}=\\begin{bmatrix} 0 \\\\0 \\\\0 \\end{bmatrix}"
which implies "x_1=0", "x_3=0", and hence, "X_1=\\begin{bmatrix} 0 \\\\1 \\\\0 \\end{bmatrix}".
The eigenvector "X_2" corresponding to the eigenvalue "\\lambda_2=2" is the solution to the equation "(A-\\lambda_2I)X=0".
"\\begin{bmatrix} 2 & 0 & 1 \\\\ \u22122 & -1 & 0 \\\\ \u22122 & 0 & -1 \\end{bmatrix}\\begin{bmatrix} x_1 \\\\ x_2 \\\\ x_3 \\end{bmatrix}=\\begin{bmatrix} 2x_1+x_3 \\\\-2 x_1-x_2 \\\\ -2x_1-x_3 \\end{bmatrix}=\\begin{bmatrix} 0 \\\\0 \\\\0 \\end{bmatrix}"
which implies "x_1=t", "x_2=-2t", "x_3=-2t", and hence, "X_2=\\begin{bmatrix} 1 \\\\-2 \\\\-2 \\end{bmatrix}".
The eigenvector "X_3" corresponding to the eigenvalue "\\lambda_3=3" is the solution to the equation "(A-\\lambda_3I)X=0".
"\\begin{bmatrix} 1 & 0 & 1 \\\\ \u22122 & -2 & 0 \\\\ \u22122 & 0 & -2 \\end{bmatrix}\\begin{bmatrix} x_1 \\\\ x_2 \\\\ x_3 \\end{bmatrix}=\\begin{bmatrix} x_1+x_3 \\\\-2 x_1-2x_2 \\\\ -2x_1-2x_3 \\end{bmatrix}=\\begin{bmatrix} 0 \\\\0 \\\\0 \\end{bmatrix}"
which implies "x_1=t", "x_2=-t", "x_3=-t", and hence, "X_3=\\begin{bmatrix} 1 \\\\-1 \\\\-1 \\end{bmatrix}".
3.3. Consider the matrix "P=(X_1 | X_2|X_3)" (i.e. "X_1, X_2 ,X_3" are the columns of this matrix).
Then
"AP=(AX_1|AX_2|AX_3)=(\\lambda_1X_1|\\lambda_2X_2|\\lambda_3X_3)=PD", where
"D=\\begin{bmatrix} \\lambda_1 & 0 & 0 \\\\ 0 & \\lambda_2 & 0 \\\\ 0 & 0 & \\lambda_3 \\end{bmatrix}=\\begin{bmatrix} 1 & 0 & 0 \\\\ 0 & 2 & 0 \\\\ 0 & 0 & 3 \\end{bmatrix}" is a diagonal matrix.
Therefore, "D=P^{-1}AP", which means that the matrix "A" is diagonalizable.
Answer. The eigenvalues of "A" are "\\lambda_1=1", "\\lambda_2=2", "\\lambda_3=3".
The eigenvalues of "A" are "X_1=\\begin{bmatrix} 0 \\\\1 \\\\0 \\end{bmatrix}" , "X_2=\\begin{bmatrix} 1 \\\\-2 \\\\-2 \\end{bmatrix}", "X_3=\\begin{bmatrix} 1 \\\\-1 \\\\-1 \\end{bmatrix}".
The matrix "P" equals to "(X_1 | X_2|X_3)=\\begin{bmatrix} 0 & 1 & 1 \\\\ 1 & -2 & -1 \\\\ 0 & -2 & -1 \\end{bmatrix}".
Comments
Leave a comment