If the characteristic polynomial of a matrix A is p(λ) = λ2+ 1, then A is invertible
P("\\lambda" )="\\lambda" 2+1"\\implies" "\\exist" A-1
det(A-"\\lambda" E)="\\begin{vmatrix}\n - \\lambda& 1 \\\\\n -1 & - \\lambda\n\\end{vmatrix}"=P("\\lambda" )
"A=\\begin{pmatrix}\n 0 & 1 \\\\\n -1 & 0\n\\end{pmatrix}"
detA=1 don`t equal 0"\\implies\\exist" A-1
Comments
Leave a comment