Solve this problem by the method of Lagrange multipliers. We have
"\\begin{cases}\n2a+b-3c+5d\\to\\max\\\\\na+7b+3c+7d-46\\le 0\\\\\n3a-b+c+2d-8\\le 0\\\\\n2a+3b-c+d-10\\le 0\\\\\n-a\\le 0\\\\\n-b\\le 0\\\\\n-c\\le 0\\\\\n-d\\le 0\n\\end{cases}"
Then "L(a,b,c,d,\\lambda)=\\lambda_0(2a+b-3c+5d)+"
"+\\lambda_1(a+7b+3c+7d-46)+\\lambda_2(3a-b+c+2d-8)+"
"+\\lambda_3(2a+3b-c+d-10)-\\lambda_4a-\\lambda_5b-\\lambda_6c-\\lambda_7d", where "\\lambda=(\\lambda_0,\\lambda_1,\\lambda_2,\\lambda_3,\\lambda_4,\\lambda_5,\\lambda_6,\\lambda_7)"
If "(a,b,c,d)" is a point of local maximum, we have that there is "\\lambda\\neq 0" such that
"\\lambda_0\\ge 0,"
"\\lambda_1\\le0, \\lambda_2\\le 0, \\lambda_3\\le 0, \\lambda_4\\le 0, \\lambda_5\\le 0, \\lambda_6\\le 0, \\lambda_7\\le 0"
"0=L'_a(a,b,c,d,\\lambda)=2\\lambda_0+\\lambda_1+3\\lambda_2+2\\lambda_3-\\lambda_4"
"0=L'_b(a,b,c,d,\\lambda)=\\lambda_0+7\\lambda_1-\\lambda_2+3\\lambda_3-\\lambda_5"
"0=L'_c(a,b,c,d,\\lambda)=-3\\lambda_0+3\\lambda_1+\\lambda_2-\\lambda_3-\\lambda_6"
"0=L'_d(a,b,c,d,\\lambda)=5\\lambda_0+7\\lambda_1+2\\lambda_2+\\lambda_3-\\lambda_7"
"\\lambda_1(a+7b+3c+7d-46)=0"
"\\lambda_2(3a-b+c+2d-8)=0"
"\\lambda_3(2a+3b-c+d-10)=0"
"\\lambda_4a=0"
"\\lambda_5b=0"
"\\lambda_6c=0"
"\\lambda_7d=0"
We consider the following cases:
1)"\\lambda_0=0"
1.1)"\\lambda_1=0"
1.1.1)"\\lambda_2=0"
1.1.1.1)"\\lambda_3=0"
Then from the equations
"0=2\\lambda_0+\\lambda_1+3\\lambda_2+2\\lambda_3-\\lambda_4"
"0=\\lambda_0+7\\lambda_1-\\lambda_2+3\\lambda_3-\\lambda_5"
"0=-3\\lambda_0+3\\lambda_1+\\lambda_2-\\lambda_3-\\lambda_6"
"0=5\\lambda_0+7\\lambda_1+2\\lambda_2+\\lambda_3-\\lambda_7"
we obtain "\\lambda=0". This case does not satisfy us.
1.1.1.2)"\\lambda_3<0"
From the equation
"0=-3\\lambda_0+3\\lambda_1+\\lambda_2-\\lambda_3-\\lambda_6"
we obtain that "\\lambda_6>0". This case does not satisfy us.
1.1.2)"\\lambda_2<0"
From the equations
"0=2\\lambda_0+\\lambda_1+3\\lambda_2+2\\lambda_3-\\lambda_4"
"0=5\\lambda_0+7\\lambda_1+2\\lambda_2+\\lambda_3-\\lambda_7"
we obtain
"\\lambda_4=3\\lambda_2+2\\lambda_3<0, \\lambda_7=2\\lambda_2+\\lambda_3<0"
From the equations
"\\lambda_4a=0, \\lambda_7d=0, \\lambda_2(3a-b+c+2d-8)=0"
we obtain
"a=0, d=0, 3a-b+c+2d-8=0" , that is "a=d=0, c=b+8"
From the equations "\\lambda_3(3b-c-10)=0, \\lambda_5b=0, \\lambda_6c=0" we obtain "2\\lambda_3(b-9)=0, \\lambda_5b=0, \\lambda_6(b+8)=0"
Since every system of two equations in "b-9=0, b=0, b+8=0" has no solutions, we obtain that at least two numbers in "\\{\\lambda_3, \\lambda_5, \\lambda_6\\}" are zeros.
Then the equations
"0=\\lambda_0+7\\lambda_1-\\lambda_2+3\\lambda_3-\\lambda_5"
"0=-3\\lambda_0+3\\lambda_1+\\lambda_2-\\lambda_3-\\lambda_6"
imply "\\lambda_2=0" . But it is contradicts with our case "\\lambda_2<0".
1.2)"\\lambda_1<0"
From the equations
"0=2\\lambda_0+\\lambda_1+3\\lambda_2+2\\lambda_3-\\lambda_4"
"0=5\\lambda_0+7\\lambda_1+2\\lambda_2+\\lambda_3-\\lambda_7"
we obtain
"\\lambda_4=\\lambda_1+3\\lambda_2+2\\lambda_3<0" and "\\lambda_7=7\\lambda_1+2\\lambda_2+\\lambda_3<0"
From the equations
"\\lambda_1(a+7b+3c+7d-46)=0, \\lambda_4a=0, \\lambda_7d=0"
we obtain "a+7b+3c+7d-46=0, a=0, d=0", that is "a=d=0, b=\\frac{46-3c}{7}"
From the equations "\\lambda_2(3a-b+c+2d-8)=0, \\lambda_3(2a+3b-c+d-10)=0,"
"\\lambda_5b=0, \\lambda_6c=0" we obtain
"\\lambda_6c=0, \\frac{3\\lambda_5}{7}\\left(\\frac{46}{3}-c\\right)=0,"
"\\frac{10\\lambda_2}{7}\\left(c-\\frac{51}{5}\\right)=0, \\frac{16\\lambda_3}{7}\\left(\\frac{17}{4}-c\\right)=0"
Since every system of two equations from "c=0, \\frac{46}{3}-c=0, c-\\frac{51}{5}=0, \\frac{17}{4}-c=0" has no solutions, we obtain that at least three numbers from "\\{\\lambda_6,\\lambda_5,\\lambda_2,\\lambda_3\\}" are zeros. Then the equations
"0=\\lambda_0+7\\lambda_1-\\lambda_2+3\\lambda_3-\\lambda_5"
"0=-3\\lambda_0+3\\lambda_1+\\lambda_2-\\lambda_3-\\lambda_6"
imply "\\lambda_1=0". It contradicts with our case "\\lambda_1<0".
2)"\\lambda_0>0". Let "\\lambda_0=1".
2.1)"\\lambda_1=0"
2.1.1)"\\lambda_2=0"
2.1.1.1)"\\lambda_3=0"
Then from "0=2\\lambda_0+\\lambda_1+3\\lambda_2+2\\lambda_3-\\lambda_4" we obtain "\\lambda_4=2\\lambda_0>0". It does not satisfy us.
2.1.1.2)"\\lambda_3<0"
From "0=-3\\lambda_0+3\\lambda_1+\\lambda_2-\\lambda_3-\\lambda_6" and "0=5\\lambda_0+7\\lambda_1+2\\lambda_2+\\lambda_3-\\lambda_7" we obtain "0\\ge\\lambda_6=-3\\lambda_0-\\lambda_3=-3-\\lambda_3" and "0\\ge\\lambda_7=5\\lambda_0+\\lambda_3=5+\\lambda_3". System "-3-\\lambda_3\\le 0", "5+\\lambda_3\\le 0" does not have solutions.
2.1.2)"\\lambda_2<0"
2.1.2.1)"\\lambda_3=0"
From "0=\\lambda_0+7\\lambda_1-\\lambda_2+3\\lambda_3-\\lambda_5" we obtain "\\lambda_5=\\lambda_0-\\lambda_2>0". I does not satisfy us.
2.1.2.2)"\\lambda_3<0"
2.1.2.2.1)"\\lambda_4=0"
From "0=2\\lambda_0+\\lambda_1+3\\lambda_2+2\\lambda_3-\\lambda_4" we obtain "0>\\lambda_3=-1-1.5\\lambda_2" and from "0=5\\lambda_0+7\\lambda_1+2\\lambda_2+\\lambda_3-\\lambda_7" we obtain "0\\ge\\lambda_7=5+2\\lambda_2+\\lambda_3=4+0.5\\lambda_2". System "4+0.5\\lambda_2\\le 0, -1-1.5\\lambda_2<0" has no solutions.
2.1.2.2.2)"\\lambda_4<0"
From "\\lambda_2(3a-b+c+2d-8)=\\lambda_3(2a+3b-c+d-10)="
"=\\lambda_4a=0" we obtain "3a-b+c+2d-8=2a+3b-c+d-10=a=0", that is "a=0, b=\\frac{3}{2}(6-d), c=\\frac{7}{2}\\left(\\frac{34}{7}-d\\right)"
2.1.2.2.2.1)"d=0". Then "b=9, c=17".
From "\\lambda_5b=\\lambda_6c=0" we obtain "\\lambda_5=\\lambda_6=0".
From "0=\\lambda_0+7\\lambda_1-\\lambda_2+3\\lambda_3-\\lambda_5" and "0=-3\\lambda_0+3\\lambda_1+\\lambda_2-\\lambda_3-\\lambda_6" we obtain "\\lambda_3=1>0" and "\\lambda_2=4>0". It does not satisfy us.
2.1.2.2.2.2)"d=6", then "b=0, c=-4"
From "\\lambda_6c=\\lambda_7d=0" we obtain "\\lambda_6=\\lambda_7=0". From "0=-3\\lambda_0+3\\lambda_1+\\lambda_2-\\lambda_3-\\lambda_6" and "0=5\\lambda_0+7\\lambda_1+2\\lambda_2+\\lambda_3-\\lambda_7" we obtain "\\lambda_2=-\\frac{2}{3}, \\lambda_3=-\\frac{11}{3}". Then from "0=2\\lambda_0+\\lambda_1+3\\lambda_2+2\\lambda_3-\\lambda_4" and "0=\\lambda_0+7\\lambda_1-\\lambda_2+3\\lambda_3-\\lambda_5" we obtain "\\lambda_4=-\\frac{22}{3}, \\lambda_5=-\\frac{28}{3}".
So "(0,0,-4,6)" can be a point of global maximum.
2.1.2.2.2.3)"d=\\frac{34}{7}", then "b=\\frac{12}{7}, c=0"
From "\\lambda_5b=\\lambda_7d=0" we obtain "\\lambda_5=\\lambda_7=0". From "0=\\lambda_0+7\\lambda_1-\\lambda_2+3\\lambda_3-\\lambda_5" and "0=5\\lambda_0+7\\lambda_1+2\\lambda_2+\\lambda_3-\\lambda_7" we obtain "\\lambda_2=-2, \\lambda_3=-1". Then from "0=2\\lambda_0+\\lambda_1+3\\lambda_2+2\\lambda_3-\\lambda_4" and "0=-3\\lambda_0+3\\lambda_1+\\lambda_2-\\lambda_3-\\lambda_6" we obtain "\\lambda_4=-6" and "\\lambda_6=-4".
So "\\left(0,\\frac{12}{7},0,\\frac{34}{7}\\right)" can be a point of global maximum.
2.1.2.2.2.4)"d\\not\\in\\left\\{0,6,\\frac{34}{7}\\right\\}" , then "b\\neq0, c\\neq 0". From "\\lambda_5b=\\lambda_6c=\\lambda_7d=0" we obtain "\\lambda_5=\\lambda_6=\\lambda_7=0". Then from "0=\\lambda_0+7\\lambda_1-\\lambda_2+3\\lambda_3-\\lambda_5", "0=-3\\lambda_0+3\\lambda_1+\\lambda_2-\\lambda_3-\\lambda_6", "0=5\\lambda_0+7\\lambda_1+2\\lambda_2+\\lambda_3-\\lambda_7" we obtain "1-\\lambda_2+3\\lambda_3=0", "-3+\\lambda_2-\\lambda_3=0", "5+2\\lambda_2+\\lambda_3=0". This sysem has no solutions.
2.2)"\\lambda_1<0"
2.2.1)"\\lambda_2=0"
2.2.1.1)"\\lambda_3=0"
2.2.1.1.1)"\\lambda_5=0". From "0=\\lambda_0+7\\lambda_1-\\lambda_2+3\\lambda_3-\\lambda_5" we obtain "\\lambda_1=-\\frac{1}{7}\\lambda_0=-\\frac{1}{7}". Then from "0=2\\lambda_0+\\lambda_1+3\\lambda_2+2\\lambda_3-\\lambda_4" we obtain "\\lambda_4=2\\lambda_0+\\lambda_1>0". It does not satisfy us.
2.2.1.1.2)"\\lambda_6=0". From "0=-3\\lambda_0+3\\lambda_1+\\lambda_2-\\lambda_3-\\lambda_6" we obtain "\\lambda_1=\\lambda_0>0". It does not satisfy us.
2.2.1.1.3)"\\lambda_7=0". From "0=5\\lambda_0+7\\lambda_1+2\\lambda_2+\\lambda_3-\\lambda_7" we obtain "\\lambda_1=-\\frac{5}{7}\\lambda_0=-\\frac{5}{7}". From "0=2\\lambda_0+\\lambda_1+3\\lambda_2+2\\lambda_3-\\lambda_4" we obtain "\\lambda_4=2\\lambda_0+\\lambda_1>0". It does not satisfy us.
2.2.1.1.5)"0\\not\\in\\{\\lambda_5, \\lambda_6, \\lambda_7\\}". From "\\lambda_5b=\\lambda_6c=\\lambda_7d=0" we obtain "b=c=d=0". Since "\\lambda_1(a+7b+3c+7d-46)=0" and "\\lambda_1<0", we have "a+7b+3c+7d-46=0", that is "a=46". Since "\\lambda_4a=0", we have "\\lambda_4=0".
From "0=2\\lambda_0+\\lambda_1+3\\lambda_2+2\\lambda_3-\\lambda_4" we obtain "\\lambda_1=-2\\lambda_0=-2". Then from "0=\\lambda_0+7\\lambda_1-\\lambda_2+3\\lambda_3-\\lambda_5", "0=-3\\lambda_0+3\\lambda_1+\\lambda_2-\\lambda_3-\\lambda_6", "0=5\\lambda_0+7\\lambda_1+2\\lambda_2+\\lambda_3-\\lambda_7" we obtain "\\lambda_5=-13, \\lambda_6=-9, \\lambda_7=-9". So "(46,0,0,0)" can be a point of global maximum.
2.2.1.2)"\\lambda_3<0"
2.2.1.2.1)"\\lambda_5=0". From "0=\\lambda_0+7\\lambda_1-\\lambda_2+3\\lambda_3-\\lambda_5" we obtain "\\lambda_3=-\\frac{7\\lambda_1+1}{3}". Then from "0=2\\lambda_0+\\lambda_1+3\\lambda_2+2\\lambda_3-\\lambda_4" we obtain "0\\ge\\lambda_4=2+\\lambda_1+2\\lambda_3=\\frac{4-11\\lambda_1}{3}", that is "\\lambda_1\\ge\\frac{4}{11}>0". It does not satisfy us.
Then "\\lambda_5\\neq 0". Since, in addition, "\\lambda_1\\neq 0" and "\\lambda_3\\neq 0", from "\\lambda_1(a+7b+3c+7d-46)="
"=\\lambda_3(2a+3b-c+d-10)=\\lambda_5b=0" we obtain "a+7b+3c+7d-46="
"=2a+3b-c+d-10=b=0", that is "c=\\frac{13}{7}\\left(\\frac{82}{13}-d\\right), a=\\frac{10}{7}\\left(\\frac{38}{5}-d\\right)"
2.2.1.2.2)"d=0", then "c=\\frac{82}{7}, a=\\frac{76}{7}"
Since "\\lambda_4a=\\lambda_6c=0", we have "\\lambda_4=\\lambda_6=0". Then from "0=2\\lambda_0+\\lambda_1+3\\lambda_2+2\\lambda_3-\\lambda_4" and "0=-3\\lambda_0+3\\lambda_1+\\lambda_2-\\lambda_3-\\lambda_6" we obtain "\\lambda_1=\\frac{4}{7}>0". It does not satisfy us.
2.2.1.2.3)"d=\\frac{82}{13}" , then "c=0, a=\\frac{24}{13}"
Since "\\lambda_4a=\\lambda_7d=0", we have "\\lambda_4=\\lambda_7=0". Then from "0=2\\lambda_0+\\lambda_1+3\\lambda_2+2\\lambda_3-\\lambda_4" and "0=5\\lambda_0+7\\lambda_1+2\\lambda_2+\\lambda_3-\\lambda_7" we obtain "\\lambda_1=-\\frac{4}{5}, \\lambda_3=-\\frac{3}{5}". Then from "0=\\lambda_0+7\\lambda_1-\\lambda_2+3\\lambda_3-\\lambda_5" and "0=-3\\lambda_0+3\\lambda_1+\\lambda_2-\\lambda_3-\\lambda_6" we obtain "\\lambda_5=-\\frac{32}{5}, \\lambda_6=-\\frac{24}{5}". So "\\left(\\frac{24}{13},0,0,\\frac{82}{13}\\right)" can be a point of global maximum.
2.2.1.2.4)"d=\\frac{38}{5}", then "c=-\\frac{12}{5}, a=0"
Since "\\lambda_6c=\\lambda_7d=0", we have "\\lambda_6=\\lambda_7=0". Then from "0=-3\\lambda_0+3\\lambda_1+\\lambda_2-\\lambda_3-\\lambda_6" and "0=5\\lambda_0+7\\lambda_1+2\\lambda_2+\\lambda_3-\\lambda_7" we obtain "\\lambda_3=-\\frac{18}{5}, \\lambda_1=-\\frac{1}{5}".
From "0=2\\lambda_0+\\lambda_1+3\\lambda_2+2\\lambda_3-\\lambda_4" and "0=\\lambda_0+7\\lambda_1-\\lambda_2+3\\lambda_3-\\lambda_5" we obtain "\\lambda_4=-\\frac{27}{5}, \\lambda_5=-\\frac{56}{5}". So "\\left(0,0,-\\frac{12}{5},\\frac{38}{5}\\right)" can be a point of global maximum.
2.2.1.2.5)"d\\not\\in\\left\\{0,\\frac{82}{13},\\frac{38}{5}\\right\\}", then "a\\neq 0, c\\neq 0". From "\\lambda_4a=\\lambda_6c=\\lambda_7d=0" we obtain "\\lambda_4=\\lambda_6=\\lambda_7=0". Then from "0=2\\lambda_0+\\lambda_1+3\\lambda_2+2\\lambda_3-\\lambda_4", "0=-3\\lambda_0+3\\lambda_1+\\lambda_2-\\lambda_3-\\lambda_6", "0=5\\lambda_0+7\\lambda_1+2\\lambda_2+\\lambda_3-\\lambda_7" we obtain that "2+\\lambda_1+2\\lambda_3=0, -3+3\\lambda_1-\\lambda_3=0, 0=5+7\\lambda_1+\\lambda_3". This has no solutions.
2.2.2)"\\lambda_2<0"
2.2.2.1)"\\lambda_3<0"
From "\\lambda_1(a+7b+3c+7d-46)=0", "\\lambda_2(3a-b+c+2d-8)=0", "\\lambda_3(2a+3b-c+d-10)=0" we obtain "a=-\\frac{14}{33}(18+d), b=\\frac{29}{66}\\left(\\frac{94}{29}-d\\right), c=\\frac{7}{6}\\left(\\frac{194}{7}-d\\right)"
2.2.2.1.1)"d=0", then "a=-\\frac{84}{11}, b=\\frac{47}{33}, c=\\frac{97}{3}"
Since "\\lambda_4a=\\lambda_5b=\\lambda_6c=0", we have "\\lambda_4=\\lambda_5=\\lambda_6=0".
From "0=2\\lambda_0+\\lambda_1+3\\lambda_2+2\\lambda_3-\\lambda_4", "0=\\lambda_0+7\\lambda_1-\\lambda_2+3\\lambda_3-\\lambda_5", "0=-3\\lambda_0+3\\lambda_1+\\lambda_2-\\lambda_3-\\lambda_6" we obtain "\\lambda_1=\\frac{16}{33}>0, \\lambda_2=\\frac{4}{33}>0, \\lambda_3=-\\frac{47}{33}" . I does not satisfy us.
2.2.2.1.2)"d=-18", then "a=0, b=\\frac{28}{3}, c=\\frac{160}{3}". Since "\\lambda_5b=\\lambda_6c=\\lambda_7d=0", we have "\\lambda_5=\\lambda_6=\\lambda_7=0".
From "0=\\lambda_0+7\\lambda_1-\\lambda_2+3\\lambda_3-\\lambda_5", "0=-3\\lambda_0+3\\lambda_1+\\lambda_2-\\lambda_3-\\lambda_6", "0=5\\lambda_0+7\\lambda_1+2\\lambda_2+\\lambda_3-\\lambda_7" we obtain "\\lambda_1=-\\frac{2}{7}, \\lambda_2=\\frac{2}{7}>0, \\lambda_3=\\frac{3}{7}>0" . I does not satisfy us.
2.2.2.1.3)"d=\\frac{94}{29}", then "a=-\\frac{784}{27}, b=0, c=\\frac{828}{29}"
Since "\\lambda_4a=\\lambda_6c=\\lambda_7d=0", we have "\\lambda_4=\\lambda_6=\\lambda_7=0"
From "0=2\\lambda_0+\\lambda_1+3\\lambda_2+2\\lambda_3-\\lambda_4", "0=-3\\lambda_0+3\\lambda_1+\\lambda_2-\\lambda_3-\\lambda_6", "0=5\\lambda_0+7\\lambda_1+2\\lambda_2+\\lambda_3-\\lambda_7" we obtain "\\lambda_1=-\\frac{7}{29}, \\lambda_2=\\frac{4}{29}>0,\\lambda_3=-\\frac{63}{58}" . It does not satisfy us.
2.2.2.1.4)"d=\\frac{194}{7}", then "a=-\\frac{640}{33}, b=-\\frac{828}{77}, c=0"
Since "\\lambda_4a=\\lambda_5b=\\lambda_7d=0", we have "\\lambda_4=\\lambda_5=\\lambda_7=0"
From "0=2\\lambda_0+\\lambda_1+3\\lambda_2+2\\lambda_3-\\lambda_4", "0=-3\\lambda_0+3\\lambda_1+\\lambda_2-\\lambda_3-\\lambda_6", "0=5\\lambda_0+7\\lambda_1+2\\lambda_2+\\lambda_3-\\lambda_7" we obtain "\\lambda_1=-\\frac{22}{29}, \\lambda_2=\\frac{54}{29}>0, \\lambda_3=-\\frac{99}{29}". I does not satisfy us.
2.2.2.1.5)"d\\not\\in\\left\\{0,-18,\\frac{94}{29},\\frac{194}{27}\\right\\}", then "a\\neq 0, b\\neq 0, c\\neq 0"
Since "\\lambda_4a=\\lambda_5b=\\lambda_6c=\\lambda_7d=0", we have "\\lambda_4=\\lambda_5=\\lambda_6=\\lambda_7=0"
Then "0=2\\lambda_0+\\lambda_1+3\\lambda_2+2\\lambda_3-\\lambda_4", "0=\\lambda_0+7\\lambda_1-\\lambda_2+3\\lambda_3-\\lambda_5" , "0=-3\\lambda_0+3\\lambda_1+\\lambda_2-\\lambda_3-\\lambda_6", "0=5\\lambda_0+7\\lambda_1+2\\lambda_2+\\lambda_3-\\lambda_7". This system has no solutions.
2.2.2.2)"\\lambda_3=0"
2.2.2.2.1)"\\lambda_6=0". Then from "0=-3\\lambda_0+3\\lambda_1+\\lambda_2-\\lambda_3-\\lambda_6" we obtain "3\\lambda_1+\\lambda_2=3". Since "\\lambda_1<0, \\lambda_2<0" , it does not satisfy us.
Then "\\lambda_6<0". From "\\lambda_6c=0" we obtain "c=0"
Since "\\lambda_1<0, \\lambda_2<0", and "\\lambda_1(a+7b+3c+7d-46)=0" , "\\lambda_2(3a-b+c+2d-8)=0", we obtain "a+7b+3c+7d-46=0, 3a-b+c+2d-8=0"
So "c=0, b=\\frac{19}{22}\\left(\\frac{130}{19}-d\\right), a=\\frac{21}{22}\\left(\\frac{34}{7}-d\\right)"
2.2.2.2.2)"d=0" , then "b=\\frac{65}{11}, a=\\frac{51}{11}"
Since "\\lambda_4a=\\lambda_5b=0", we have "\\lambda_4=\\lambda_5=0". Since "0=2\\lambda_0+\\lambda_1+3\\lambda_2+2\\lambda_3-\\lambda_4" and "0=\\lambda_0+7\\lambda_1-\\lambda_2+3\\lambda_3-\\lambda_5", we obtain "\\lambda_1=-\\frac{5}{22}, \\lambda_2=-\\frac{13}{22}"
Then from "0=5\\lambda_0+7\\lambda_1+2\\lambda_2+\\lambda_3-\\lambda_7" we obtain "\\lambda_7=\\frac{49}{22}>0". It does not satisfy us.
2.2.2.2.3)"d=\\frac{130}{19}", then "b=0, a=-\\frac{36}{19}"
Since "\\lambda_4a=\\lambda_7d=0", we have "\\lambda_4=\\lambda_7=0" . Since "0=2\\lambda_0+\\lambda_1+3\\lambda_2+2\\lambda_3-\\lambda_4" and "0=5\\lambda_0+7\\lambda_1+2\\lambda_2+\\lambda_3-\\lambda_7", we obtain "\\lambda_1=-\\frac{9}{19}, \\lambda_2=-\\frac{11}{19}"
Then from "0=\\lambda_0+7\\lambda_1-\\lambda_2+3\\lambda_3-\\lambda_5", "0=-3\\lambda_0+3\\lambda_1+\\lambda_2-\\lambda_3-\\lambda_6" we obtain "\\lambda_5=-\\frac{33}{19}, \\lambda_6=-5". So "\\left(-\\frac{36}{19},0,0,\\frac{130}{19}\\right)" can be a point of global maximum.
2.2.2.2.4)"d=\\frac{34}{7}" , then "b=\\frac{12}{7}, a=0"
Since "\\lambda_5b=\\lambda_7d=0" , we have "\\lambda_5=\\lambda_7=0". Since "0=\\lambda_0+7\\lambda_1-\\lambda_2+3\\lambda_3-\\lambda_5" and "0=5\\lambda_0+7\\lambda_1+2\\lambda_2+\\lambda_3-\\lambda_7", we obtain "\\lambda_1=-\\frac{1}{3}, \\lambda_2=-\\frac{4}{3}". Then from "0=2\\lambda_0+\\lambda_1+3\\lambda_2+2\\lambda_3-\\lambda_4" and "0=-3\\lambda_0+3\\lambda_1+\\lambda_2-\\lambda_3-\\lambda_6" we obtain "\\lambda_4=-\\frac{7}{3}" and "\\lambda_6=-\\frac{16}{3}". So "\\left(0,\\frac{12}{7},0,\\frac{34}{7}\\right)" can be a point of global maximum.
2.2.2.2.5)"d\\not\\in\\left\\{0,\\frac{130}{19},\\frac{34}{7}\\right\\}", then "a\\neq 0, b\\neq 0". Since "\\lambda_4a=\\lambda_5b=\\lambda_7d=0", we have "\\lambda_4=\\lambda_5=\\lambda_7=0". Then the system "0=2\\lambda_0+\\lambda_1+3\\lambda_2+2\\lambda_3-\\lambda_4", "0=\\lambda_0+7\\lambda_1-\\lambda_2+3\\lambda_3-\\lambda_5", "0=5\\lambda_0+7\\lambda_1+2\\lambda_2+\\lambda_3-\\lambda_7" has no solutions.
Consider set of our points "A=\\bigl\\{(0,0,-4,6),\\left(0,\\frac{12}{7},0,\\frac{34}{7}\\right),(46,0,0,0),"
"\\left(\\frac{24}{13},0,0,\\frac{82}{13}\\right),\\left(0,0,-\\frac{12}{5},\\frac{38}{5}\\right),"
"\\left(-\\frac{36}{19},0,0,\\frac{130}{19}\\right),\\left(0,\\frac{12}{7},0,\\frac{34}{7}\\right)\\bigr\\}"
Let "B=\\{(a,b,c,d)| a+7b+3c+7d\\le 46,"
"3a-b+c+2d \\le 8, 2a+3b-c+d\\le 10,"
"a\\ge 0, b\\ge 0, c\\ge 0, d\\ge 0\\}".
Then "A\\cap B=\\left\\{\\left(0,\\frac{12}{7},0,\\frac{34}{7}\\right)\\right\\}"
Let "f(a,b,c,d)=2a+b-3c+5d", then "f(A\\cap B)=\\{26\\}".
We have that "B" is closed as intersection of closed sets. Also "B\\subset\\{(a,b,c,d)|a+7b+3c+7d\\le 46,"
"a\\ge 0, b\\ge 0, c\\ge 0, d\\ge 0\\}\\subset"
"\\subset[0,46]\\times\\left[0,\\frac{46}{7}\\right]\\times\\left[0,\\frac{46}{3}\\right]\\times\\left[0,\\frac{46}{7}\\right]". So "B" is bounded. By the Heine–Borel theorem we obtain that "B" is a compact set. Then since "f" is continuous on "B", there is a maximum of "f(B)".
We have that the maximum of "f(B)" is "f\\left(0,\\frac{12}{7},0,\\frac{34}{7}\\right)=26".
Answer: "26" in point "\\left(0,\\frac{12}{7},0,\\frac{34}{7}\\right)"
Comments
Leave a comment