"x_1+x_2\\geq 6"
"3x_1+2x_2\\leq 30"
"2x_1+x_2\\leq 5"
"x_1, x_2\\geq 0"
Maximize "z=5x_1+8x_2"
Green region shows all solutions of "\\begin{cases}\nx_1+x_2\\geq 6\n\\\\3x_1+2x_2\\leq 30\n\\\\\n2x_1+x_2\\leq 5\n\\end{cases}"
And red region shows all solutions of "x_1,x_2\\geq 0"
We can see that there is no solution of the system "\\begin{cases}\nx_1+x_2\\geq 6\n\\\\3x_1+2x_2\\leq 30\n\\\\\n2x_1+x_2\\leq 5\n\\\\ x_1,x_2\\geq 0\n\\end{cases}" because intersection of these regions is empty.
Therefore, we can’t maximize "z=5x_1+8x_2" because there is no "(x_1,x_2)" , for which all inequalities are satisfied.
Comments
Leave a comment