3. Solve the following LPP by the two-phase simplex method. (10)
Max 1 2 3 Z = x + x − x
Subject to 4x1 + x2 + x3 = 4
3 2 6 x1 + x2 − x4 =
x1
, x2
, x3 ≥ 0
Solution.
May be the condition of the task next:
"z=x_1+x_2-x_3 - max, \\newline\n4x_1+x_2+x_3=4,\\newline\n3x_1+2x_2-x_3=6, \\newline\nx_1,x_2,x_3>=0."
Introduce new variables "x_4, x_5:"
"4x_1+x_2+x_3+x_4=4, \\newline\n3x_1+2x_2-x_3+x_5=6,"
then "z = -Mx_4-Mx_5=\\newline =-M(4-4x_1-x_2-x_3)-M(6-3x_1-2x_2+x_3)=\\newline =7Mx_1+Mx_2-10M - max"
Introduce new variable x_0:
"x_0=7x_1+3x_2."
We will have:
"x_0=-10+7x_1+3x_2,"
"x_4=4-4x_1-x_2-x_3,\\newline\nx_5=6-3x_1-2x_2+x_3."
This plan is not optimal because there are positive elements in the expression for "x_0" . Select a new variable "x_1," then
"x_1=1-\\frac{1}{4}x_2-\\frac{1}{4}x_3-\\frac{1}{4}x_4."
From here
"x_0=-3+\\frac{5}{4}x_2-\\frac{7}{4}x_3-\\frac{7}{4}x_4,"
"x_5=3-\\frac{5}{4}x_2+\\frac{7}{4}x_3+\\frac{3}{4}x_4."
The expression for "x_0" has positive elements, the plan is not optimal. The largest coefficient is near "x_2" , then choose "x_2" as a new variable.
"x_2=\\frac{12}{5}+\\frac{7}{5}x_3+\\frac{3}{5}x_4-\\frac{4}{5}x_5,\n\\newline\nx_0=0-x_4-x_5,\n\\newline\nx_1=\\frac{2}{5}-\\frac{3}{5}x_3-\\frac{2}{5}x_4+\\frac{1}{5}x_5."
The expression for "x_0"
has not positive elements, the plan is optimal.
We will deduce variables "x_4, x_5" from basis:
"x_0=\\frac{14}{5}-\\frac{1}{5}x_3,"
"x_1=\\frac{2}{5}-\\frac{3}{5}x_3,"
"x_2=\\frac{12}{5}+\\frac{7}{5}x_3."
Optimal plan:
"x_1=\\frac{2}{5}, x_2=2\\frac{2}{5}, x_3=0."
So, max "z(x)=2\\frac{2}{5}."
Answer. max "z(x)=2\\frac{2}{5}."
Comments
Leave a comment