Use dual simplex method to solve the following LPP .
Min z = x1 + 2x2 + 3x3
Subject to
x1 - x2 + x3 ≥ 4
x1 + x2 + 2x3 ≤ 8
x1 - x3 ≥ 2
x1, x2, x3 ≥ 0 .
Iteration 1"\\def\\arraystretch{1.0}\n \\begin{array}{c:c:c:c:c:c:c:c:c:c:c:c:c}\n B& Cb &P&x_1&x_2&x_3&x_4&x_5&x_6&x_7&x_8&x_9&Q \\\\ \\hline\n & & & 4 &-8&2&0&0&0&0&0&0 \\\\\n \\hdashline\n x_7 & 0 & 1&1&-1&1&1&0&0&1&0&0&1 \\\\\n \\hdashline\nx_8&0&1&-1&-1&0&0&1&0&0&1&0&-1 \\\\\n \\hdashline\nx_9&0&1&1&-2&-1&0&0&1&0&0&1&1 \\\\\n \\hdashline\nmax&&0&-4&8&-2&0&0&0&0&0&0&\n\\end{array}"
Comments
Leave a comment