Solve using dual simplex method
Minimize z 2x₁ + 2x₂ + 4x3
2x+3x2 + 5x3 2 2
Subject to 3x1 + x₂ + 7x3 <3
x1 + 4x₂ + 6x3 ≤ 5
In order to apply the dual simplex method, convert minZ to maxZ:
"maxZ=-2x_1-2x_2-4x_3"
subject to
"2x_1+3x_2+5x_3\\le2"
"3x_1+x_2+7x_3\\le3"
"x_1+4x_2+6x_3\\le5"
"x_1,x_2,x_3\\ge0"
The problem is converted to canonical form by adding slack, surplus and artificial variables:
After introducing slack variables:
"maxZ=-2x_1-2x_2-4x_3+0S_1+0S_2+0S_3"
"2x_1+3x_2+5x_3+S_1=2"
"3x_1+x_2+7x_3+S_2=3"
"x_1+4x_2+6x_3+S_3=5"
"x_1,x_2,x_3,S_1,S_2,S_3\\ge0"
Since all "Z_j-C_j\\ge0" and all "X_{Bi}\\ge0" thus the current solution is the optimal solution:
"x_1=x_2=x_2=0"
Comments
Leave a comment