Solve the (4x3) game with pay off matrix.
A=
8 5 8
8 6 5
7 4 5
6 5 6
At each stage, clearly explain the steps involved.
Question
Solve game with pay off matrix is 4 x 3.
"A=\\begin{bmatrix}\n 8& 5& 8\\\\\n\n8 &6& 5\\\\\n\n7 &4& 5\\\\\n\n6 &5 &6\\\\\n\\end{bmatrix}"
Solution
Dominance rule to reduce the size of the payoff matrix;
Using dominance property;
"player B"
"B_1" "B_2" "B_3"
"player A \\begin{matrix}\n A_1 \\\\\n A_2\\\\\nA_3 \\\\\n A_4\\\\\n\\end{matrix}\\space\\begin{bmatrix}\n 8& 5& 8\\\\\n\n8 &6& 5\\\\\n\n7 &4& 5\\\\\n\n6 &5 &6\\\\\n\\end{bmatrix}"
"row-4 \u2264 row-1, so\\space remove \\space row-4, (A4\u2264A1:6\u22648,5\u22645,6\u22648)"
"player B"
"B_1" "B_2" "B_3"
"player A \\begin{matrix}\n A_1 \\\\\n A_2\\\\\nA_3 \\\\\n\n\\end{matrix}\\space\\begin{bmatrix}\n 8& 5& 8\\\\\n\n8 &6& 5\\\\\n\n7 &4& 5\\\\\n\n\n\\end{bmatrix}"
"row-3 \u2264 row-2, so\\space remove \\space row-3, (A3\u2264A2:7\u22648,4\u22646,5\u22645)"
"player B"
"B_1" "B_2" "B_3"
"player A \\begin{matrix}\n A_1 \\\\\n A_2\\\\\n\n\n\\end{matrix}\\space\\begin{bmatrix}\n 8& 5& 8\\\\\n\n8 &6& 5\\\\\n\n\n\n\n\\end{bmatrix}"
"column-1 \u2265 column-3, so \\space remove\\space column-1. (B1\u2265B3:8\u22658,8\u22655)"
"player B"
"B_2" "B_3"
"player A \\begin{matrix}\n A_1 \\\\\n A_2\\\\\n\n\n\\end{matrix}\\space\\begin{bmatrix}\n 5& 8\\\\\n\n6& 5\\\\\n\n\n\n\n\\end{bmatrix}"
now we solve last matrix
for the solution, we write difference of elements of row to front of other row
similarly we write difference of elements of column to below of other column
such that
"player B"
"B_2" "B_3"
"player A \\begin{matrix}\n A_1 \\\\\n A_2\\\\\n\n\n\\end{matrix}\\space\\begin{bmatrix}\n 5& 8\\\\\n\n6& 5\\\\\n\n\n\n\n\\end{bmatrix}\\begin{matrix}\n|6-5| \\\\\n |5-8|\\\\\n\n\n\\end{matrix}"
|8-5| |5-6|
"player B"
"B_2" "B_3"
"player A \\begin{matrix}\n A_1 \\\\\n A_2\\\\\n\n\n\\end{matrix}\\space\\begin{bmatrix}\n 5& 8\\\\\n\n6& 5\\\\\n\n\n\n\n\\end{bmatrix}\\begin{matrix}\n1\\\\\n 3\\\\\n\n\n\\end{matrix}"
|3| |1|
"player B"
"B_2" "B_3"
"player A \\begin{matrix}\n A_1 \\\\\n A_2\\\\\n\n\n\\end{matrix}\\space\\begin{bmatrix}\n 5& 8\\\\\n\n6& 5\\\\\n\n\n\n\n\\end{bmatrix}\\begin{matrix}\n1 & \\frac{1}{1+3}\\\\\n 3& \\frac{3}{1+3}\\\\\n\n\n\\end{matrix}"
|3| |1|
"\\frac{3}{3+1}" "\\frac{1}{3+1}"
"player B"
"B_2" "B_3"
"player A \\begin{matrix}\n A_1 \\\\\n A_2\\\\\n\n\n\\end{matrix}\\space\\begin{bmatrix}\n 5& 8\\\\\n\n6& 5\\\\\n\n\n\n\n\\end{bmatrix}\\begin{matrix}\n1 & \\frac{1}{4}\\\\\n 3& \\frac{3}{4}\\\\\n\n\n\\end{matrix}"
|3| |1|
"\\frac{3}{4}" "\\frac{1}{4}"
Hence
strategy of A="\\{\\frac{1}{4},\\frac{3}{4},0,0\\}"
strategy of B="\\{0,\\frac{3}{4},\\frac{1}{4}\\}"
value of game ="(5\\times \\frac{1}{4})+(6\\times \\frac{3}{4})"
"=\\frac{5}{4}+\\frac{18}{4}\n\n\t\t\t\t\t\t =\\frac{23}{4}"
Comments
Leave a comment