Consider the following LPP
Maximize Z = 2x1 + 3x2
Subject to
x1 + 3x2 ≤ 6
3x1 + 2x2 ≤ 6
x1, x2 ≥ 0
a. Determine all the basic solutions of the problem, and classify them as feasible and
infeasible.
b. Carry out the full tableau implementation of the simplex method, starting with the basic
feasible solution (x1, x2) = (0, 0)
"a. \\text{ Solving the system of linear equations given in the constraints simultaneously, we }\\\\\n\\text{have that $x_1 = \\frac{6}{7}$ and $x_2 = \\frac{12}{7}$}\\\\\n\\text{We can determine the feasible solutions by setting one variable to 0 in each constraint }\\\\\n\\text{Hence, we have }\\\\\n(0,2), (6,0),(0,3),(2,0)\\\\\n\\text{(0,2) and (2,0) are feasible solutions, since they satisfy all the constraints and (0,3)}\\\\\n\\text{and (6,0) are infeasible solutions because they do not satisfy all the constraints}\\\\\nb. \\text{ Next, we find the optimal solution using simplex method}\\\\\n\\text{The first tableau is given by}\\\\\n\\begin{matrix}\n & & x_1 & x_2 & x_3 & x_4 \\\\\n & & 2 & 3 & 0 & 0\\\\\\hline\nx_3 & 0 & 1 & 3 & 1 & 0 & 6\\\\\nx_4 & 0 & 3 & 2 & 0 & 1 & 6\\\\\n& & -2 & -3 & 0 & 0 & 0\n\\end{matrix}\\\\\n\\text{Applying row reduction techniques to each row and the simplex algorithm, we get}\\\\\n\\text{tableau 2}\\\\\n\\begin{matrix}\n & & x_1 & x_2 & x_3 & x_4 \\\\\n & & 2 & 3 & 0 & 0\\\\\\hline\nx_2 & 3 & \\frac{1}{3} & 1 & \\frac{1}{3} & 0 & 2\\\\\nx_4 & 0 & \\frac{7}{3} & 0 & -\\frac{2}{3} & 1 & 2\\\\\n& & -1 & 0 & 1 & 0 & 6\n\\end{matrix}\\\\\n\\text{The final tableau is given by}\\\\\n\\begin{matrix}\n & & x_1 & x_2 & x_3 & x_4 \\\\\n & & 2 & 3 & 0 & 0\\\\\\hline\nx_2 & 3 & 0 & 1 & \\frac{3}{7} & -\\frac{1}{7} & \\frac{12}{7}\\\\\nx_1 & 2 & 1 & 0 & -\\frac{2}{7} & \\frac{3}{7} & \\frac{6}{7}\\\\\n& & 0 & 0 & \\frac{5}{7} & \\frac{3}{7} & \\frac{48}{7}\n\\end{matrix}\\\\\n\\text{Hence the feasible solution which is optimal is $x_1=\\frac{12}{7}$, $x_2=\\frac{6}{7}$ and $z=\\frac{48}{7}$}"
Comments
Leave a comment