Define variables and make the system of equations:
Let w - count of Widgets.
Let m - count of Mingets.
Let t - count of Tringes.
Then
4w - costs of Widgets,
5m - costs of Mingets,
7t - costs of Tringes.
And w - profit for Widgets
2m - profit for Mingets
3t - profit for Tringes.
"\\begin{cases} \nm + t + w = 13000 \\\\\n5m + 7t + 4w = 70000 \\\\\n2m + 3t + w = 2700 \n\\end{cases}"Solve it:
"\\begin{pmatrix}\n 1 & 1 & 1 \\\\\n 5 & 7 & 4 \\\\\n 2 & 3 & 1\n\\end{pmatrix}\n\\begin{pmatrix}\n 13000 \\\\\n 70000 \\\\\n 27000\n\\end{pmatrix}"
"\\begin{pmatrix}\n 1 & 1 & 1 \\\\\n 0 & 2 & -1 \\\\\n 0 & 1 & -1\n\\end{pmatrix}\n\\begin{pmatrix}\n 13000 \\\\\n 5000 \\\\\n 1000\n\\end{pmatrix}"
"\\begin{pmatrix}\n 1 & 3 & 0 \\\\\n 0 & 2 & -1 \\\\\n 0 & -1 & 0\n\\end{pmatrix}\n\\begin{pmatrix}\n 18000 \\\\\n 5000 \\\\\n -4000\n\\end{pmatrix}"
"\\begin{pmatrix}\n 1 & 3 & 0 \\\\\n 0 & 2 & -1 \\\\\n 0 & 1 & 0\n\\end{pmatrix}\n\\begin{pmatrix}\n 18000 \\\\\n 5000 \\\\\n 4000\n\\end{pmatrix}"
"\\begin{pmatrix}\n 1 & 0 & 0 \\\\\n 0 & 0 & -1 \\\\\n 0 & 1 & 0\n\\end{pmatrix}\n\\begin{pmatrix}\n 6000 \\\\\n -3000 \\\\\n 4000\n\\end{pmatrix}"
so m = 6000, w = 3000, t = 4000
The Answer:
Tringles - 3000 items
Widgets - 6000 items
Mingets - 4000 items
Comments
Leave a comment