1.Determine the nature of the stationary value of x= t^3 - 3t + ty^2
2. A rectangle box whose value is 32 is open at the top,if the surface area is 2(L+B)H + LB where LBH are Length,Breadth and Height Respectively
i.Find the Dimension of the box that may require list material
ii.investigate weather the dimension found requires List material.
1.
"\\dfrac{\\partial x}{\\partial y}=2yt"
Find the critical point(s)
"\\dfrac{\\partial x}{\\partial y}=0"
"2yt=0"
"t=0, y=-\\sqrt{3}"
"t=0, y=\\sqrt{3}"
"y=0,t=-1"
"y=0, t=1"
"\\dfrac{\\partial^2 x}{\\partial t^2}=6t"
"\\dfrac{\\partial^2 x}{\\partial t\\partial y}=2y"
"\\dfrac{\\partial^2 x}{\\partial y^2}=2t"
"D=\\begin{vmatrix}\n 6t & 2y \\\\\n 2y & 2t\n\\end{vmatrix}=12t^2-4y^2"
"t=0, y=-\\sqrt{3}"
"D|_{t=0, y=-\\sqrt{3}}=-12<0"
"x(0, -\\sqrt{3})" is not a local maximum or local minimum.
"t=0, y=\\sqrt{3}"
"\\dfrac{\\partial^2 x}{\\partial t^2}|_{t=0, y=\\sqrt{3}}=0""D|_{t=0, y=\\sqrt{3}}=-12<0"
"x(0, \\sqrt{3})" is not a local maximum or local minimum.
"t=-1, y=0"
"\\dfrac{\\partial^2 x}{\\partial t^2}|_{t=-1, y=0}=-6<0""D|_{t=-1, y=0}=12>0"
"x(-1, 0)" is a local maximum.
"t=1, y=0"
"\\dfrac{\\partial^2 x}{\\partial t^2}|_{t=1, y=0}=6>0""D|_{t=1, y=0}=12>0"
"x(1, 0)" is a local minimum.
2.
Given
"LBH=32=>H=\\dfrac{32}{LB}""S=(2L+2B)H+LB"
Substitute
"=\\dfrac{64}{B}+\\dfrac{64}{L}+LB, L>0, B>0"
"\\dfrac{\\partial S}{\\partial B}=-\\dfrac{64}{B^2}+L"
Find the critical point(s)
"\\dfrac{\\partial S}{\\partial B}=0"
"-\\dfrac{64}{B^2}+L=0"
"BL^2=64=L^2B"
"B=L=4"
"\\dfrac{\\partial^2 S}{\\partial L^2}=\\dfrac{128}{L^3}"
"\\dfrac{\\partial^2 S}{\\partial B^2}=\\dfrac{128}{BL^3}"
"\\dfrac{\\partial^2 S}{\\partial L\\partial B}=1"
"D=\\begin{vmatrix}\n128\/L^3 & 1 \\\\\n 1 & 128\/B^3\n\\end{vmatrix}=16384\/(LB)^3-1"
"\\dfrac{\\partial^2 S}{\\partial L^2}|_{L=4, B=4}=2>0"
"D|_{L=4, B=4}=4-1=3>0"
"S(4, 4)" is a local minimum.Since the function "S(L,B)" has the only extreme value for "L>0, B>0," then S(4, 4) is the absolute minimm for "L>0, B>0."
The dimensions of the box for least material are
"Length\\times Breadth\\times Height""=4\\times4\\times 2"
Comments
Leave a comment