An aeroplane heads due north at 500 km/h. It experiences a 80 km/h crosswind flowing in
the direction N60^°E.
(a) Find the true velocity of the aeroplane.
"\\vec{u}=80\\sin60\\degree \\vec{i}+80\\cos60\\degree\\vec{j}"
"\\vec{v}_{res}=\\vec{v}+\\vec{u}"
"=40\\sqrt{3}\\vec{i}+540\\vec{j}"
"|\\vec{v}_{res}|=\\sqrt{(40\\sqrt{3})^2+(540)^2}=20\\sqrt{741}(km\/h)"
"\\tan \\theta=\\dfrac{40\\sqrt{3}}{540}=\\dfrac{2\\sqrt{3}}{27}"
"\\theta=\\tan^{-1}\\dfrac{2\\sqrt{3}}{27}\\approx7.3111\\degree"
"20\\sqrt{741}" km/h in the direction "N(\\tan^{-1}\\dfrac{2\\sqrt{3}}{27})\\degree E."
"544.4263" km/h in the direction "N(7.31)\\degree E."
Comments
Leave a comment