Find the fourth Taylor polynomial approximation of "\\displaystyle{sin^{-1}\\left(\\sqrt{{x}}\\right)}" at "x=\\frac{1}{2}"
"f(\\frac{1}{2})=\\frac{\\pi}{ 4}"
"f'(x)=\\frac{1}{ 2\\cdot \\sqrt{{x}-{{x}}^{2}}} \\implies f'(\\frac{1}{2})=" 1
"f''(x)=\\frac{1}{ 4} (2x-1)(x-x^2)^{-\\frac{3}{2}} \\implies f''(\\frac{1}{2})=0"
"f^{(3)}(x)=\\frac{1}{ 2} (x-x^2)^{-\\frac{3}{2}} + \\frac{3}{8} (2x-1)^2(x-x^2)^{-\\frac{5}{2}} \\implies f^{(3)}(\\frac{1}{2})=4"
"f^{(4)}(x)=\\frac{3}{ 4} (x-x^2)^{-\\frac{5}{2}}(2x-1) + \\\\ + \\frac{3}{8} (4(2x-1)(x-x^2)^{-\\frac{5}{2}} +\\frac{5}{2}(2x-1)^3 (x-x^2)^{-\\frac{7}{2}}) \\implies f^{(4)}(\\frac{1}{2})=0"
The fourth degree Taylor polynomia:
"\\displaystyle{sin^{-1}\\left(\\sqrt{{x}}\\right)} \\approx \\frac{\\pi}{ 4}-(x-\\frac{1}{2})+\\frac{2}{3}(x-\\frac{1}{2})^3"
close to "x=\\frac{1}{2}"
Comments
Leave a comment