"A=\\begin{bmatrix}\n 1&-1&1 \\\\\n 2&0&3\\\\\n1&4&-1\n\\end{bmatrix}"
Begin with an initial nonzero approximation of
"x_0=\\begin{bmatrix} 1 \\\\ 1\\\\ 1 \\end{bmatrix}"
Then obtain the following approximations
Iteration
"x_1=Ax_0=\\begin{bmatrix} 1 & -1&1 \\\\ 2 & 0&3\\\\ 1&4&-1 \\end{bmatrix}\\begin{bmatrix} 1 \\\\ 1\n\\\\ 1 \\end{bmatrix} =\\begin{bmatrix} 1 \\\\ 5\\\\ 4 \\end{bmatrix}"
“Scaled” Approximation
"\\to1\\begin{bmatrix} 1 \\\\ 5\\\\ 4 \\end{bmatrix}"
"x_2=Ax_1=\\begin{bmatrix} 1 & -1&1 \\\\ 2 & 0&3\\\\ 1&4&-1 \\end{bmatrix}\\begin{bmatrix} 1 \\\\ 5\\\\ 4 \\end{bmatrix} =\\begin{bmatrix} 0 \\\\ 14\\\\ 17 \\end{bmatrix}"
"\\to14\\begin{bmatrix} 0 \\\\ 1\\\\ 1.2 \\end{bmatrix}"
"x_3=Ax_2=\\begin{bmatrix} 1 & -1&1 \\\\ 2 & 0&3\\\\ 1&4&-1 \\end{bmatrix}\\begin{bmatrix} 0 \\\\ 14\\\\ 17 \\end{bmatrix} =\\begin{bmatrix} 3 \\\\ 51\\\\ 39 \\end{bmatrix}\\\\\n\\to3\\begin{bmatrix} 1 \\\\ 17\\\\ 13 \\end{bmatrix}\\\\\nx_4=Ax_3=\\begin{bmatrix} 1 & -1&1 \\\\ 2 & 0&3\\\\ 1&4&-1 \\end{bmatrix}\\begin{bmatrix} 3 \\\\ 51\\\\ 39 \\end{bmatrix} =\\begin{bmatrix} -9 \\\\ 123\\\\ 168 \\end{bmatrix}\\\\\n\\to-9\\begin{bmatrix} 1 \\\\ -13.7\\\\ -18.7 \\end{bmatrix}"
Note that the approximations appear to be approaching scalar multiples of
"\\begin{bmatrix} 1 \\\\ -14\\\\ -19 \\end{bmatrix}"
With x=(1,-13.7,-18.7) as the approximation of a dominant eigenvector of A ,
use the Rayleigh quotient to obtain an approximation of the dominant eigenvalue of A . First compute the product Ax
"Ax=\\begin{bmatrix} 1 & -1&1 \\\\ 2 & 0&3\\\\ 1&4&-1 \\end{bmatrix}\\begin{bmatrix} 1 \\\\ -13.7\\\\ -18.7 \\end{bmatrix} =\\begin{bmatrix} -4 \\\\ -54.1\\\\ -35.1 \\end{bmatrix}"
Then, because
"Ax\\cdot x=-4\\cdot 1+(-54.1)(-13.7)+(-35.1)(-18.7)=1393.54\\\\\n x\\cdot x=1\\cdot1+(-13.7)(-13.7)+(-18.7)(-18.7)=538.38"
you can compute the Rayleigh quotient to be
"\\lambda=\\frac{Ax\\cdot x}{x\\cdot x}=\\frac{1393.54}{538.38}=2.6"
which is a good approximation of the dominant eigenvalue
"\\lambda=3"
Answer:
"\\begin{bmatrix} 1 \\\\ -14\\\\ -19 \\end{bmatrix}, \\lambda=3"
Comments
Leave a comment