We know that there is a solution for the equation "e^x+x-4=0" in "[1,2]."
"x_{i+1}=\\ln(4-x_i)"
"\\begin{matrix}\n i & x_i \\\\\n 0 & 1\\\\\n 1 & 1.098612 \\\\\n 2 & 1.065189\\\\\n 3 & 1.076643\\\\\n 4 & 1.072733\\\\\n 5 & 1.074069\\\\\n 6 & 1.073613\\\\\n 7 & 1.073769 \\\\\n 8 & 1.073715\\\\\n 9 & 1.073734\\\\\n 10 & 1.073727\\\\\n 11 & 1.073729 \\\\\n 12 & 1.073729\\\\\n \n\\end{matrix}"
"\\varepsilon =\\big|\\dfrac{1.098612-1}{1}\\big|\\cdot 100\\%=9.8612\\%"
"\\varepsilon =\\big|\\dfrac{1.065189-1.098612}{1.098612}\\big|\\cdot 100\\%=3.0423\\%"
"\\varepsilon =\\big|\\dfrac{1.076643-1.065189}{1.065189}\\big|\\cdot 100\\%=1.0753\\%"
"\\varepsilon =\\big|\\dfrac{1.072733-1.076643}{1.076643}\\big|\\cdot 100\\%=0.3632\\%"
"\\varepsilon =\\big|\\dfrac{1.074069-1.072733}{1.072733}\\big|\\cdot 100\\%=0.1245\\%"
"\\varepsilon =\\big|\\dfrac{1.073769-1.073713}{1.073713}\\big|\\cdot 100\\%=0.005029\\%"
"\\varepsilon =\\big|\\dfrac{1.074069-1.072733}{1.072733}\\big|\\cdot 100\\%=0.1245\\%"
"\\varepsilon =\\big|\\dfrac{1.073613-1.074069}{1.074069}\\big|\\cdot 100\\%=0.0425\\%"
"\\varepsilon =\\big|\\dfrac{1.073769-1.073613}{1.073613}\\big|\\cdot 100\\%=0.0145\\%"
"\\varepsilon =\\big|\\dfrac{1.073715-1.073769}{1.073769}\\big|\\cdot 100\\%=0.0050\\%"
"x=1.073613"
The root is "1.074"
Comments
Leave a comment