Let "f(x)=x^3-x^2+2x-2"
Use initial guesses "x_0=-2, x_1=0, x_2=2"
"f(x_0)=f(-2)=-18"
"f(x_1)=f(0)=-2"
"f(x_2)=f(2)=6"
"h_0=x_1-x_0=0-(-2)=2"
"h_1=x_2-x_1=2-0=2"
"\\delta_0=\\dfrac{f(x_1)-f(x_0)}{h_0}=\\dfrac{-2-(-18)}{2}=8" "\\delta_1=\\dfrac{f(x_2)-f(x_1)}{h_1}=\\dfrac{6-(-2)}{2}=4"
"a=\\dfrac{\\delta_1-\\delta_0}{h_1+h_0}=\\dfrac{4-8}{2+2}=-1"
"b=a\\times h_1+\\delta_1=-1\\times2+4=2"
"c=f(x_2)=f(2)=6"
"x_3=2+\\dfrac{-2(6)}{2+\\sqrt{2^2-4(-1)(6)}}=0.35424869"
Relative percent error
"\\begin{matrix}\n n & 1 & 2 & 3 \\\\\n x_0 & -2 & 0 & 2 \\\\\n x_1 & 0 & 2 & 0.354249 \\\\\n x_2 & 2 & 0.354249 & 0.828618 \\\\\n f(x_0) & -18 & -2 & 6 & \\\\\n f(x_1) & -2 & 6 & -1.3725396 \\\\\n f(x_2) & 6 & -1.3725396 & -0.460436 \\\\\n a & -1 & 1.354249 & 2.182867 \\\\\n b & 2 & 2.250984 & 2.958255 \\\\\n c & 6 & -1.3725396 & -0.460436 \\\\\n x_3 & 0.354249 & 0.828618 & 0.969597 \\\\\n \\varepsilon_{a^n} & 464.575131 & 57.248251 & 14.539952\n\\end{matrix}"
Approximate root of the equation "x^3-x^2+2x-2=0" using Muller method is "1" (After 6 iterations)
Comments
Leave a comment