Find the value of tan 33° by Lagrange’s formula if
tan 30° = 0.5774, tan 32° = 0.6249,
tan 35° = 0.7002, tan 38° = 0.7813.
Here the intervals are unequal.
By Lagrange’s interpolation formula we have
"y=f(x)=\\dfrac{(x-x_1)(x-x_2)(x-x_3)}{(x_0-x_1)(x_0-x_2)(x_0-x_3)}\\times y_0""+\\dfrac{(x-x_0)(x-x_2)(x-x_3)}{(x_1-x_0)(x_1-x_2)(x_1-x_3)}\\times y_1"
"+\\dfrac{(x-x_0)(x-x_1)(x-x_3)}{(x_2-x_0)(x_2-x_1)(x_2-x_3)}\\times y_2"
"+\\dfrac{(x-x_0)(x-x_1)(x-x_2)}{(x_3-x_0)(x_3-x_1)(x_3-x_2)}\\times y_3"
Put "x=33"
"f(33)=\\dfrac{(33-32)(33-35)(33-38)}{(30-32)(30-35)(30-38)}\\times 0.5774""+\\dfrac{(33-30)(33-35)(33-38)}{(32-30)(32-35)(32-38)}\\times 0.6249"
"+\\dfrac{(33-30)(33-32)(33-35)}{(38-30)(38-32)(38-35)}\\times 0.7813"
"=0.6494"
"\\tan33\\degree=0.6494"
Comments
Leave a comment