Use the Newton’s method to approximate the real solution of xcube-2x-2=0 in the interval [1,2]
x3 - 2x - 2 = 0 x "\\in" [ 1, 2 ]
Let f(x) = x3 - 2x - 2
f(1) = (1)3 - 2(1) - 2
f(1) = -3
f(2) = (2)3 - 2(2) - 2
f(2) = 2
Hence, a real solution of f(x) exists between 1 and 2.
f ' (x) = 3x2 - 2
Let x0 = 1.5
xn+1 = xn - "\\dfrac{f(x\\scriptscriptstyle n)}{f'(x\\scriptscriptstyle n)}"
"\\implies" n= 0
x1 = x0 - "\\dfrac{f(x\\scriptscriptstyle 0)}{f'(x\\scriptscriptstyle 0)}"
x1 = 1.5 - "\\dfrac{f(1.5)}{f'(1.5)}"
f(1.5) = (1.5)3 - 2(1.5) - 2 = -1.625
f ' (x) = 3(1.5)2 - 2 = 4.75
x1 = 1.5 + "\\dfrac{1.625}{4.75}"
x1 = 1.842
"\\implies" n =1
x2 = x1 - "\\dfrac{f(x\\scriptscriptstyle 1)}{f'(x\\scriptscriptstyle 1)}"
x2 = 1.842 - "\\dfrac{f(1.842)}{f'(1.842)}"
f(1.842) = (1.842)3 - 2(1.842) - 2 = 0.566
f ' (x) = 3(1.842)2 - 2 = 8.178
x2 = 1.842 - "\\dfrac{0.566}{8.178}"
x2 = 1.772
"\\implies" n =2
x3 = x2 - "\\dfrac{f(x\\scriptscriptstyle 2)}{f'(x\\scriptscriptstyle 2)}"
x3 = 1.772 - "\\dfrac{f(1.772)}{f'(1.772)}"
f(1.772) = (1.772)3 - 2(1.772) - 2 = 0.0201
f ' (x) = 3(1.772)2 - 2 = 7.420
x3 = 1.772 - "\\dfrac{0.0201}{7.420}"
x3 = 1.769
"\\implies" n = 3
x4 = x3 - "\\dfrac{f(x\\scriptscriptstyle 3)}{f'(x\\scriptscriptstyle 3)}"
x4 = 1.769 - "\\dfrac{f(1.769)}{f'(1.769)}"
f(1.769) = (1.769)3 - 2(1.769) - 2 = -0.00216
f ' (x) = 3(1.769)2 - 2 = 7.388
x4 = 1.769 - "\\dfrac{-0.00216}{7.388}"
x4 = 1.769
Now we see that x4 = x3 . Hence, the root of the given equation is 1.769 correct up to three decimal places.
Comments
Leave a comment