1. Solve cos(x)=2x, using fixed point iteration to 5 decimal places
Do 5 iterations. Solve , using fixed point iteration to 5 decimal places
Given that "cos(x)=2x"
Applying fixed iteration method:
"x=\\frac{cos(x)}{2}\\\\\n\\therefore x_{n+1}=\\frac{cos(x_n)}{2}\\\\"
Take "x_0=1\\\\"
So,
"x_1=\\frac{cos \\ 1}{2}=0.27015\\\\\nx_2=\\frac{cos(x_1)}{2}=\\frac{cos(0.27015)}{2}=0.48186\\\\\nx_3=\\frac{cos(x_2)}{2}=\\frac{cos(0.48186)}{2}=0.44306\\\\\nx_4=\\frac{cos(x_3)}{2}=\\frac{cos(0.44306)}{2}=0.45172\\\\\nx_5=\\frac{cos(x_4)}{2}=\\frac{cos(0.45172)}{2}=0.44984\\\\"
Comments
Leave a comment