approximate the real root to four decimal places of x3+5x-3=0 (newton raphson method)
Here "x^{3}+5 x-3=0"
Let "f(x)=x^{3}+5 x-3"
"\\\\\n\n\\\\\\frac{d}{d x}\\left(x^{3}+5 x-3\\right)=3 x^{2}+5\n\n\\therefore f(x)=3 x^{2}+5"
Here
Here "f(0)=-3<0\\ and\\ f(1)=3>0"
"\\therefore" Root lies between 0 and 1
"x_{0}=\\frac{0+1}{2}=0.5\n\n\\\\x_{0}=0.5"
"1^{s t}" iteration :
"f\\left(x_{0}\\right)=f(0.5)=0.5^{3}+5 \\cdot 0.5-3=-0.375\n\n\\\\f^{\\prime}\\left(x_{0}\\right)=f(0.5)=3 \\cdot 0.5^{2}+5=5.75"
"\\begin{aligned}\n\n&x_{1}=x_{0}-\\frac{f\\left(x_{0}\\right)}{f\\left(x_{0}\\right)} \\\\\n\n&x_{1}=0.5-\\frac{-0.375}{5.75} \\\\\n\n&x_{1}=0.5652\n\n\\end{aligned}"
"2^{n d}" iteration :
"\\begin{aligned}\n\n&f\\left(x_{1}\\right)=f(0.5652)=0.5652^{3}+5 \\cdot 0.5652-3=0.0067 \\\\\n\n&f^{\\prime}\\left(x_{1}\\right)=f(0.5652)=3 \\cdot 0.5652^{2}+5=5.9584\n\n\\end{aligned}"
"\\begin{aligned}\n\n&x_{2}=x_{1}-\\frac{f\\left(x_{1}\\right)}{f\\left(x_{1}\\right)} \\\\\n\n&x_{2}=0.5652-\\frac{0.0067}{5.9584} \\\\\n\n&x_{2}=0.5641\n\n\\end{aligned}"
"3^{\\text {rd }}" iteration :
"f\\left(x_{2}\\right)=f(0.5641)=0.5641^{3}+5 \\cdot 0.5641-3=0"
"\\begin{aligned}\nf^{\\prime}\\left(x_{2}\\right)=f(0.5641)=3 \\cdot 0.5641^{2}+5=5.9546 \\\\\nx_{3}=x_{2}-\\frac{f\\left(x_{2}\\right)}{f\\left(x_{2}\\right)} \\\\\nx_{3}=0.5641-\\frac{0}{5.9546} \\\\\nx_{3}=0.5641 \\\\\n\\text { Approximate root of the equation } x^{3}+5 x-3=0 \n\\\\\\text { using Newton Raphson mehtod is } 0.5641 \\text { (After } 3 \\text { iterations) }\n\\end{aligned}"
Comments
Leave a comment