Five point central difference formula for the second order derivative can expressed as
Taylor series expansions for "f(x_{i-1}),\\ f(x_{i+1}),\\ f(x_{i-2})" and "\\ f(x_{i+2})," we get
"={(a+b+c+d+e) \\over (\\Delta x)^2}f(x_i)+"
"+{(-b+c-2d+2e)f(x_i) \\over \\Delta x}f'(x_i)+"
"+{1 \\over 2}(b+c+4d+4e)f''(x_i)+"
"+{\\Delta x \\over 6}(-b+c-8d+8e)f'''(x_i)+"
"+{(\\Delta x)^2 \\over 24}(b+c+16d+16e)f^{(IV)}(x_i)+"
"+{(\\Delta x)^3 \\over 120}(-b+c-32d+32e)f^{(V)}(x_i)+"
"+{(\\Delta x)^4 \\over 720}(b+c+64d+64e)f^{(VI)}(x_i)+H"
The coefficients must satisfy the following conditions
"f''(x_i)\\approx{-{5 \\over 2}f(x_i)+{4 \\over 3}f(x_{i-1})+{4 \\over 3}f(x_{i+1})-{1 \\over 12}f(x_{i-2})-{1 \\over 12}f(x_{i+2}) \\over (\\Delta x)^2}"
Comments
Leave a comment