According to Lagrange’s Theorem, there exists at least one point ‘c’ on the open interval (a,b), such as
"f'(c)=\\frac{f(b)-f(a)}{b-a}"
Let's prove that "\\log(x+1)>x-\\frac{x^2}{2}"
Let's denote "f=\\log(x+1)+\\frac{x^2}{2}"
Using Lagrange’s Mean Value Theorem for function f, will lead us to
"\\exist c\\in (0,b)" such as "f'(c)=\\frac{f(b)-f(0)}{b-0}=\\frac{\\log(b+1)+\\frac{b^2}{2}}{b}"
Therefore
"f'(c)=\\frac{1}{c+1}+c=\\frac{\\log(b+1)+\\frac{b^2}{2}}{b}"
"\\frac{1}{c+1}+c=1+\\frac{c^2}{1+c}>1"
Hence
"\\frac{\\log(b+1)+\\frac{b^2}{2}}{b}>1"
"\\log(b+1)+\\frac{b^2}{2}>b"
So "\\log(x+1)>x-\\frac{x^2}{2}"
Let's prove that "\\log(x+1)<x-\\frac{x^2}{2(1+x)}"
Let's denote "f=\\log(x+1)+\\frac{x^2}{2(x+1)}"
Using Lagrange’s Mean Value Theorem for function f, will lead us to "\\exist c\\in (0,b)" such as
"\\frac{\\log(b+1)+\\frac{b^2}{2(b+1)}}{b}=f'(c)=\\frac{1}{c+1}+\\frac{2c2(c+1)-2c^2}{4(1+c)^2}=1-\\frac{2c^2}{4(1+c)^2}<1"
Hence "\\frac{\\log(b+1)+\\frac{b^2}{2(b+1)}}{b}<1"
"\\log(b+1)+\\frac{b^2}{2(b+1)}<b"
So "\\log(x+1)<x-\\frac{x^2}{2(1+x)}"
Comments
Leave a comment