.ANSWER.
1)An open interval is a set "(a,b)=\\left\\{ x\\in R:a<x<b \\right\\}" .Let "c\\in (a,b)" and "\\varepsilon =min\\left\\{ \\frac { b-c }{ 2 } ,\\frac { c-a }{ 2 } \\right\\}" ."\\varepsilon <\\frac { b-c }{ 2 }" and "-\u03b5>\\frac { -c+a }{ 2 }" . Therefore
"a=\\frac { a+a }{ 2 } <\\frac { c+a }{ 2 } =\\frac { 2c+a-c }{ 2 } =c+\\frac { a-c }{ 2 } \\ <c-\\varepsilon \\ <c+\\varepsilon <c+\\frac { b-c }{ 2 } =\\frac { b+c }{ 2 } <\\frac { 2b }{ 2 } =b" .
So, for all "c\\in (a,b)\\quad" exist ε>0 , such that "(c-\\varepsilon \\ ,c+\\varepsilon )\\subset (a,b)" .By the definition of an open set , any open interval is an open set.
2)Similarly, the sets "(-\\infty ,a)=\\left\\{ x\\in R:-\\infty <x<a \\right\\}" and "(b,+\\infty )==\\left\\{ x\\in R:b<x<+\\infty \\right\\}" are open sets . Because , for all "c\\in \\ (-\\infty ,a)" exist "\\varepsilon =\\frac { -c+a }{ 2 }","(c+\\varepsilon =\\frac { c+a }{ 2 } <\\frac { a+a }{ 2 } =a)" , such that "(c-\\varepsilon \\ ,c+\\varepsilon )\\subset (-\\infty ,a)" .
If "d\\in (b,+\\infty )\\quad \\varepsilon =\\frac { d-b }{ 2 } \\quad (d-\\varepsilon =\\frac { d+b\\quad }{ 2 } >b)" , then "(d-\\varepsilon \\quad ,d+\\varepsilon )\\subset (b,+\\infty \\quad )" .
3) A closed interval is a set "[a,b]=\\left\\{ x\\in R:a\\le x\\ \\le b \\right\\}" "=R\\diagdown \\left( (-\\infty ,a)\\cup (b,+\\infty ) \\right)"
That is, the closed interval is the complement of the set "I=(-\\infty ,a)\\cup (b,+\\infty )" .From 2) it follows that the set "I" is open. Therefore, by the definition of the closed set, the set
"[a,b]" is closed.
Comments
Leave a comment