1). Given,
"\\sum_{n=1}^{\\infty}\\dfrac{1}{(4n-1)(4n+3)}"Thus,
"\\sum_{n=1}^{\\infty}\\dfrac{1}{(4n-1)(4n+3)}=\\frac{1}{4}\\sum_{n=1}^{\\infty}\\bigg(\\dfrac{1}{4n-1}-\\frac{1}{4n+3}\\bigg)"Now, by Telescoping method, we get
"\\sum_{n=1}^{\\infty}\\dfrac{1}{(4n-1)(4n+3)}=\\frac{1}{4}\\lim_{n\\rightarrow \\infty}(\\frac{1}{3}-\\frac{1}{4n+3})=\\frac{1}{12}<1"2).
Given,
"\\sum_{n=1}^{\\infty}\\dfrac{1}{4n^2-1}=\\sum_{n=1}^{\\infty}\\dfrac{1}{(2n-1)(2n+1)}=\\frac{1}{2}\\sum_{n=1}^{\\infty}\\bigg(\\dfrac{1}{2n-1}-\\frac{1}{2n+1}\\bigg)"Again, by Telescoping sum we get
"\\sum_{n=1}^{\\infty}\\dfrac{1}{4n^2-1}=\\frac{1}{2}\\lim_{n\\rightarrow \\infty}(1-\\frac{1}{2n+1})=1\/2<1"Hence, we are done.
Comments
Leave a comment