Assume that f(x) is an odd function on the interval [−L/2, L/2].
"b_n=\\dfrac{1}{L}\\displaystyle\\int_{-L}^{L}f(x)\\sin(\\dfrac{n\\pi x}{L})dx, n=1,2,..."
"b_n=\\dfrac{1}{L}\\displaystyle\\int_{-L}^{L}f(x)\\sin(\\dfrac{n\\pi x}{L})dx="
"=\\dfrac{2}{\\pi\/2}\\displaystyle\\int_{0}^{\\pi\/2}\\cos x\\sin(\\dfrac{n\\pi x}{\\pi\/2})dx="
"=\\dfrac{4}{\\pi}\\displaystyle\\int_{0}^{\\pi\/2}\\cos x\\sin(2nx)dx"
"\\int\\cos x\\sin (2nx)dx="
"=\\dfrac{1}{2}\\int(\\sin ((2n+1)x)+\\sin ((2n-1)x))dx="
"=-\\dfrac{1}{2(2n+1)}\\cos((2n+1)x)-\\dfrac{1}{2(2n-1)}\\cos((2n-1)x)+C"
"b_n=\\dfrac{4}{\\pi}\\displaystyle\\int_{0}^{\\pi\/2}\\cos x\\sin(2nx)dx="
"=-\\dfrac{2}{\\pi(2n+1)}(\\cos((2n+1)\\dfrac{\\pi}{2})+\\dfrac{2}{\\pi(2n+1)}\\cos((2n+1)(0))-"
"-\\dfrac{2}{\\pi(2n-1)}(\\cos((2n-1)\\dfrac{\\pi}{2})+\\dfrac{2}{\\pi(2n-1)}\\cos((2n-1)(0))="
"+\\dfrac{2}{\\pi(2n-1)}\\sin(\\pi n)+\\dfrac{2}{\\pi(2n-1)}=\\dfrac{8n}{\\pi(4n^2-1)}"
"f(x)\\sim\\displaystyle\\sum_{n=1}^\\infin\\dfrac{8n}{\\pi(4n^2-1)}\\sin(2nx)"
Comments
Leave a comment