Suppose that (π₯β)βππ½ βΆ π₯ in X and (π¦β)βππ½ βΆ π¦ in Y. Show that
(π₯πΌ Γ π¦πΌ) β π₯ Γ π¦ ππ π Γ π.
(π₯πΌ Γ π¦πΌ) β π₯ Γ π¦ ππ π Γ π
proof considering the limits
lim "\\alpha\\to1" "(x^\\alpha)^\\alpha = X" and lim "\\alpha""\\to1" "(y^\\alpha)^\\alpha = Y"
lim "\\alpha""\\to1" "(x^\\alpha)^\\alpha = \\alpha x ," lim "\\alpha""\\to1" "(y^\\alpha)^\\alpha = \\alpha Y"
since "\\alpha\\to1" then (π₯πΌ Γ π¦πΌ) β π₯ Γ π¦ ππ π Γ π
Comments
Leave a comment