"\\begin{aligned}\n\\mathcal{L}\\left(\\frac{e^{-at} - e^{-bt}}{t}\\right) &= \\int_s^\\infty \\mathcal{L}\\left(e^{-at} - e^{-bt}\\right)\\{s\\}\\,\\mathrm{d}s\n\\\\&= \\int_s^\\infty \\left(\\frac{1}{s + a} - \\frac{1}{s + b}\\right)\\,\\mathrm{d}s\n\\\\&= \\ln\\left(\\frac{s + a}{s + b}\\right) \\vert_s^\\infty\n\\\\&= \\lim_{s \\to \\infty} \\ln\\left(\\frac{1 + \\frac{a}{s}}{1 + \\frac{b}{s}}\\right) - \\ln\\left(\\frac{s + a}{s + b}\\right) \n\\\\&= \\ln(1) - \\ln\\left(\\frac{s + a}{s + b}\\right) = -\\ln\\left(\\frac{s + a}{s + b}\\right)\n\\\\&= \\ln\\left(\\frac{s + b}{s + a}\\right)\n\\end{aligned}"
Comments
Leave a comment