Prove A∩(B∩C)=(A∩B)∩C
Let"x \\in A \\cap (B \\cap C)"
"\\implies x \\in A" and "x \\in B \\cap C"
"\\implies x \\in A" and "x \\in B" and "x \\in C"
"\\implies x\\in A \\cap B" and "x \\in C"
"\\implies x \\in (A\\cap B) \\cap C"
"\\implies A\\cap (B \\cap C) \\sub (A\\cap B) \\cap C"
Conversely, let "y \\in (A\\cap B) \\cap C"
"\\implies y \\in A \\cap B" and "y \\in C"
"\\implies y \\in A" and "y \\in B" and "y \\in C"
"\\implies y\\in A" and "y\\in B\\cap C"
"\\implies y\\in A \\cap (B\\cap C)"
"\\implies (A\\cap B) \\cap C \\sub A \\cap (B \\cap C)"
Hence, "A \\cap (B \\cap C) = (A\\cap B) \\cap C"
Comments
Leave a comment