A function is uniformly continuous on a set I⊂R if
a) for some ε0>0 we can find a δ>0 such that if x,y∈I and |x-y|<δ, then |f(x)-f(y)|<ε0
b) for any ε0>0 we can find a δ>0 such that if x,y∈I and |x-y|<δ, then |f(x)-f(y)|<ε0
c) for any ε0>0 and any δ>0, if x,y∈I and |x-y|<δ0, then f(x)-f(y)|<ε0
d) all of the above
e) none of the above
"\\displaystyle\n\\textbf{\\textsf{Option B is correct}}\\\\\n\\textsf{Given a function}\\,\\, f: D \\to R \\\\\n\\textsf{as above and an element}\\,\\, x_0 \\\\\n\\textsf{of the domain}\\,\\, D,\\,\\, f \\,\\, \\textsf{is said}\\\\\n\\textsf{to be continuous at the point}\\,\\,x_0 \\\\\n\\textsf{when the following holds:}\\\\\n\\textsf{For any number}\\,\\, \\epsilon > 0, \\,\\, \\textsf{however small,}\\\\\n\\textsf{there exists some number}\\,\\, \\delta > 0\\\\\n\\textsf{such that for all}\\,\\, x \\,\\, \\textsf{in the domain}\\\\\n\\textsf{of}\\,\\, f \\,\\, \\textsf{with}\\,\\, x_0 \u2212 \\delta < x < x_0 + \\delta, \\,\\, \\textsf{the value of}\\,\\, f(x) \\,\\, \\textsf{satisfies}\\\\\n\nf(x_{0})-\\varepsilon <f(x)<f(x_{0})+\\varepsilon.\\\\\n\n\n\\textsf{Alternatively written, continuity of}\\,\\, f : D \\to R \\\\\n\\textsf{at}\\,\\, x_0 \\in D\\,\\, \\textsf{means that for every}\\,\\, \\epsilon > 0 \\\\\n\\textsf{there exists a}\\,\\, \\delta > 0 \\\\\n\\textsf{such that for all}\\,\\, x \\in D:\n\n |x-x_{0}|<\\delta \\Rightarrow |f(x)-f(x_{0})|<\\varepsilon"
Comments
Leave a comment