Assume that $1<p<+\infty$, a real-valued function $f$ is absolutely continuous on $[a,b]$, and its derivative $f'$ is in $L^p[a,b]$. Prove that $f$ is $\alpha$-Lipschitz, where $\alpha=1/q$, with $q$ being the conjugate exponent of $p$.
Numbers and figures are an essential part of our world, necessary for almost everything we do every day. As important…
APPROVED BY CLIENTS
"assignmentexpert.com" is professional group of people in Math subjects! They did assignments in very high level of mathematical modelling in the best quality. Thanks a lot
Comments
Leave a comment