To prove that the series
converges, let's compare it with another series
"\\sum\\limits_{n = 1}^{ + \\infty } {\\frac{1}{{{n^2}}}}"We can see that for any "n \\ge 1"
"\\frac{1}{{(2n + 3)(2n + 5)}} = \\frac{1}{{4{n^2} + 16n + 15}} < \\frac{1}{{{n^2}}}"because "4{n^2} + 16n + 15 > {n^2}" for any "n \\ge 1" .
It means that if the series "\\sum\\limits_{n = 1}^{ + \\infty } {\\frac{1}{{{n^2}}}}" converges, then the series "\\sum\\limits_{n = 1}^{ + \\infty } {\\frac{1}{{(2n + 3)(2n + 5)}}}" converges too.
To prove that "\\sum\\limits_{n = 1}^{ + \\infty } {\\frac{1}{{{n^2}}}}" converges, we can use the Cauchy integral test: in short, the series "\\sum\\limits_{n = 1}^{ + \\infty } {f(n)}" converges or diverges simultaneously with the integral "\\int\\limits_1^{ + \\infty } {f(x)dx}". Thus, for "\\sum\\limits_{n = 1}^{ + \\infty } {\\frac{1}{{{n^2}}}}" we get
So the series "\\sum\\limits_{n = 1}^{ + \\infty } {\\frac{1}{{{n^2}}}}" converges and then the series
"\\sum\\limits_{n = 1}^{ + \\infty } {\\frac{1}{{(2n + 3)(2n + 5)}}}"converges too by the comparison theorem.
Comments
Leave a comment